

Техническая информация

Преобразователидифференциального давления

VEGADIF 65

Содержание

1	Принцип измерения	3
	Обзор типов	
	Выбор устройств	
	Критерии выбора	
5	Обзор корпусов	8
6	Монтаж	9
7	Электроника - 4 20 mA - двухпроводная	. 10
	Электроника - 4 20 mA/HART - двухпроводная	
9	Электроника - Profibus PA	. 12
10	Электроника - Foundation Fieldbus	. 13
11	Настройка	. 14
12	Размеры	. 15

Указания по безопасности для применения

Для применения во взрывоопасных зонах следует исполнять указания по безопасности для применения Ех, которые прилагаются к каждому устройству в соответствующем исполнении, а также могут быть загружены с нашей домашней страницы www.vega. com » Downloads » Zulassungen. Во взрывоопасных зонах должны соблюдаться соответствующие нормы и требования сертификатов соответствия и свидетельств утверждения типа датчиков и устройств питания. Датчики можно эксплуатировать только в искробезопасных токовых цепях. Допустимые значения электрических параметров следует брать из соответствующего свиде-в зонах Ех

1 Принцип измерения

В качества чувствительного элемента применяется металлическая ячейка. Давления процесса передаются через разделительные мембраны и заполняющее масло на мост для измерения сопротивлений (полупроводниковая технология).

Измеряется зависимое от разности давлений изменение напряжения моста и преобразуется в соответствующий выходной сигнал.

Конструкции измерительных ячеек различаются в зависимости от измерительного диапазона:

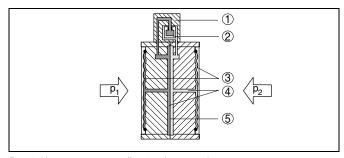


Рис. 1: Измерительные ячейки 10 mbar и 30 mbar - давления процесса p_1 и p_2

- 1 Измерительный элемент
- 2 Кремниевая мембрана
- 3 Разделительная мембрана
- 4 Заполняющее масло
- 5 Интегрированная защита от перегрузок

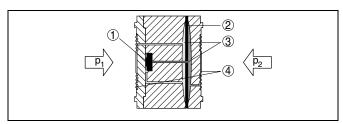


Рис. 2: Измерительные ячейки от 100 mbar - давление процесса p_1 и p_2

- 1 Измерительный элемент
- . 2 Предохранительная мембрана/Срединная мембрана
- 3 Заполняющее масло
- 4 Разделительная мембрана

Обзор типов

VEGADIF 65 с изолирующей диафрагмой CSS

VEGADIF 65 с изолирующей диафрагмой CSB

Измерительная ячейка	Пьезорезистивный	Пьезорезистивный	Пьезорезистивный
Мембрана	Металл	Металл	Металл
Среды	Газы, пары и жидкости	Газы, пары и жидкости, в том числе агрессивные и с высокой температурой	Газы, пары и жидкости, в том числе агрессивные и с высокой температурой
Присоединение	NPT ¼-18 по IEC 61518	Плюсовая сторона: • Фланцы от DN 50 или 2" • Фланец с тубусом от DN 50 или 2" Минусовая сторона: NPT 1/4-18 по IEC 61518	Плюсовая и минусовая сторона: Фланцы от DN 32 или 2" Фланцы с тубусом от DN 40 или 2" Гигиенические типы присоединения от DN 32
Материал Присоединение	C22.8, 316L, Hastelloy C 276	316L	316L
		316L, хастеллой С276, тантал, пленка PTFE на 316L	316L, хастеллой С276, тантал, пленка РТFE на 316L, инконель 600
Уплотнение измерительной ячейки	FKM, PTFE, NBR, медь	•	-
Заполняющая жидность изолирующей диафрагмы	Силиконовое масло	Силиконовое масло, высокотемпературное масло, галоидуглеродное масло, мед. белое масло	Силиконовое масло, высокотемпературное масло, галоидуглеродное масло, мед. белое масло
Диапазон измерения	0,01 40 bar (0.145 580.2 psig)	0,1 40 bar (1.45 580.2 psig)	0,1 40 bar (1.45 580.2 psig)
Наименьший устанавливаемый интервал измерения	0,25 mbar (0.036 psig)	1 mbar (0.015 psig)	1 mbar (0.015 psig)
Температура процесса	-40 +85 °C (-40 +185 °F)	-40 +400 °C (-40 +752 °F)	-40 +400 °C (-40 +752 °F)
Температура окружающей среды, хранения и транспортировки	-40 +80 °C (-40 +176 °F)	-40 +80 °C (-40 +176 °F)	-40 +80 °C (-40 +176 °F)
Погрешность измерения	±0,075 %	±0,075 % (±0,05 %) установленного диапазона + влияние диафрагмы	±0,075 % (±0,05 %) установленного диапазона + влияние диафрагмы
Выход сигнала	 4 20 mA 4 20 mA/HART Profibus PA Foundation Fieldbus 	4 20 mA4 20 mA/HARTProfibus PAFoundation Fieldbus	 4 20 mA 4 20 mA/HART Profibus PA Foundation Fieldbus
Индикация/Настройка	PLICSCOMPACTwareVEGADIS 61	PLICSCOMPACTwareVEGADIS 61	PLICSCOM PACTware VEGADIS 61
Разрешения	ATEX IEC Gost-R	ATEX IEC Gost-R	ATEX IEC Gost-R

3 Выбор устройств

Области применения

Преобразователь дифференциального давления VEGADIF 65 предназначен для различных измерительных задач. Прибор применяется для измерения давления с целью контроля фильтров и насосов, а также для измерения уровня жидкостей в емкостях под давлением. Тонкая градация измерительных ячеек по ступени давления и минимальная погрешность измерения позволяют применять прибор также для измерения расхода, плотности и межфазного уровня.

Преобразователь дифференциального давления VEGADIF 65 применяется на всех газах, парах и жидкостях, для которых требуется стойкий к среде датчик. Для применения в экстремально влажных зонах имеется исполнение со степенью защиты IP 68.

Измерение дифференциального давления

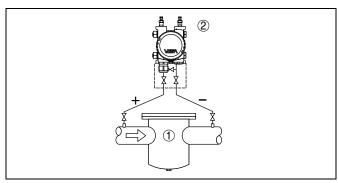


Рис. 3: Измерение дифференциального давления посредством VEGADIF 65

- 1 Фильтр
- 2 VEGADIF 65

Измерение уровня

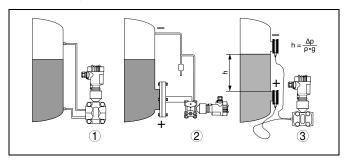


Рис. 5: Измерение уровня посредством VEGADIF65: Δp = дифференциальное давление, ρ = плотность среды, g = ускорение свободного падения

- 1 Базовое исполнение с линиями динамического давления
- 2 Исполнение с фланцевой изолирующей диафрагмой
- 3 Исполнение с капиллярами и изолирующими диафрагмами-ячейками

Измерение расхода

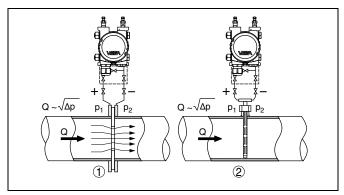


Рис. 7: Измерение расхода посредством VEGADIF 65 и датчика динамического давления, Q = расход, Δp = дифференциальное давление, Δp = p_1 - p_2

- 1 Диафрагма
- 2 Трубка Вентури

Измерение плотности

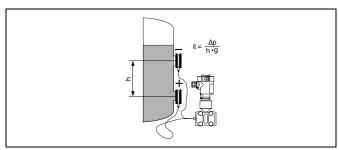


Рис. 9: Измерение плотности посредством VEGADIF 65, h= определенное монтажное расстояние, $\Delta p=$ дифференциальное давление, $\rho=$ плотность среды, g= ускорение свободного падения

1 VEGADIF 65

Измерение межфазного уровня

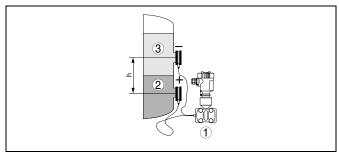


Рис. 11: Измерение межфазного уровня посредством VEGADIF 65

- 1 VEGADIF 65
- 2 Жидкость с большей плотностью
- Жидкость с меньшей плотностью

Конструкция - базовое исполнение

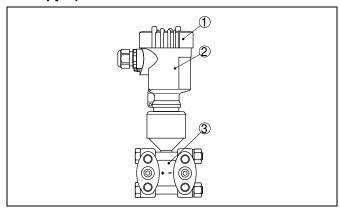


Рис. 13: VEGADIF 65 в базовом исполнении

- Крышка корпуса, вариант с установленным под ней модулем индикации и настройки
- 2 Корпус с электроникой
- 3 Узел присоединения к процессу с измерительной ячейкой

Конструкция с изолирующей диафрагмой с одной стороны CSS

Составными частями изолирующей диафрагмы CSS являются разделительная мембрана, присоединение и соединительная часть с линией передачи (капилляром). Составные части полностью сварены между собой и с преобразователем дифференциального давления в единую герметичную систему.

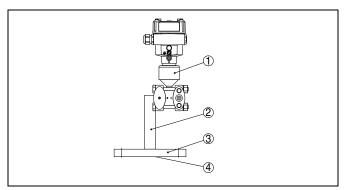


Рис. 15: VEGADIF 65 с изолирующей диафрагмой CSS

1 VEGADIF 65

6

- 2 Присоединение
- . 3 Линия передачи (капилляр)
- 4 Разделительная мембрана

Конструкция с изолирующей диафрагмой с двух сторон CSB

Составными частями изолирующей диафрагмы CSB являются разделительная мембрана, присоединение и линии передачи (капилляры). Составные части полностью сварены между собой и с преобразователем дифференциального давления в единую герметичную систему.

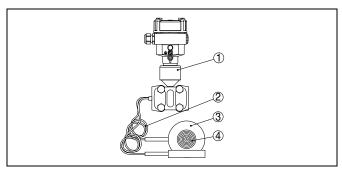


Рис. 17: VEGADIF 65 с изолирующей диафрагмой CSB

- 1 VEGADIF 65
- 2 Линия передачи (капилляр)
- 3 Присоединение
- 4 Разделительная мембрана

В разделе бесплатных загрузок <u>www.vega.com/downloads</u> можно найти руководства по эксплуатации, информацию по применению в различных отраслях промышленности, разрешения на применение, чертежи устройств и др.

4 Критерии выбора

		VEGADIF 65	VEGADIF 65 с изолирующ- ей диафрагмой CSS	VEGADIF 65 с изолирующе- й диафрагмой CSB
Исполнение заподлицо		ı	•	•
Изолирующая диафрагма		-	•	•
	Измерение уровня	0	•	•
	Измерение дифференциального давления	•	-	•
Применение	Измерение расхода	•	-	-
	Измерение плотности	1	-	•
	Измерение межфазного уровня	I	_	•
	120 °C (248 °F)	•	•	•
Макс. температура процесса	400 °C (752 °F)	-	•	•
Гигиенические типы присоединения		1	•	•
Диапазоны измерения 10 mbar/ 30 mbar		•	_	_
Диапазоны измерения от 100 mbar		•	•	•
	Химическая промышленность	1	•	•
	Энергетика	•	•	•
Применение в различных	Бумажная промышленность	•	•	•
отраслях	Защита окружающей среды и переработка отходов	•	_	•
	Водоснабжение и сточные воды	•	-	-

Рис. 19: Условные обозначения: ullet = Да; О = Да, для жидких, несгущающихся и газообразных сред; — = Нет

5 Обзор корпусов

Пластик PBT		
Степень защиты	IP 66/IP 67	IP 66/IP 67
Исполнение	Однокамерный	Двухкамерный
Область применения	Общепромышленные условия	Общепромышленные условия

Алюминий		
Степень защиты	IP 66/IP 67, IP 66/IP 68 (1 bar)	IP 66/IP 67, IP 66/IP 68 (1 bar)
Исполнение	Однокамерный	Двухкамерный
Область применения	Общепромышленные условия с повышенными механическими требованиями	Общепромышленные условия с повышенными механическими требованиями

Нержавеющая сталь 316L			
Степень защиты	IP 66/IP 67	IP 66/IP 67, IP 66/IP 68 (1 bar)	IP 66/IP 67, IP 66/IP 68 (1 bar)
Исполнение	Однокамерный электрополированный	Однокамерный литой (точное литье)	Двухкамерный, точное литье
Область применения	Агрессивная окружающая среда, пищевая и фармацевтическая промышленность	Агрессивная окружающая среда, повышенные механические требования	Агрессивная окружающая среда, повышенные механические требования

Выносное исполнение		
Материал	Нержавеющая сталь 316L	Пластик PBT
Степень защиты	IP 68 (25 bar)	IP 65
Функция	Чувствительный элемент	Выносная электроника
Область применения	Экстремально влажная окружающая среда	Общепромышленные условия

6 Монтаж

Монтажное положение

Устройства работают в любом монтажном положении. В зависимости от измерительной системы, монтажное положение влияет на измерение. Влияние монтажного положения можно компенсировать посредством коррекции положения.

Монтажное положение прибора имеет смысл выбирать исходя из удобства монтажа и подключения, а также доступности для установки модуля индикации и настройки. Корпус прибора можно повернуть без инструмента на 330°. Модуль индикации и настройки также можно установить в одном из четырех положений со сдвигом на 90°.

Примеры монтажа

Примеры монтажа и измерительных установок показаны на рисунках ниже.

Реакторная емкость

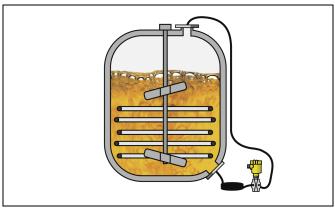


Рис. 20: Измерение уровня в реакторной емкости с помощью VEGADIF 65

VEGADIF 65 может применяться, в том числе, при высоких температурах. Устройство измеряет гидростатическое давление столба жидкости в реакторной емкости независимо от наличия пены на поверхности продукта. Преимуществами прибора являются высокопрочные материалы мембраны и небольшой объем заполняющего масла изолирующей диафрагмы, благодаря чему температурное влияние изолирующей диафрагмы является малым.

Отопительный котел

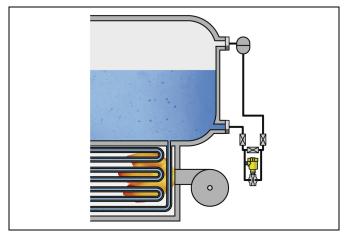


Рис. 22: Измерение уровня в отопительном котле с помощью VEGADIF 65

VEGADIF 65 применяется также при высоких температурах и давлениях. Устройство измеряет гидростатическое давление столба жидкости в отопительном котле независимо от статического давления в емкости.

Hacoc

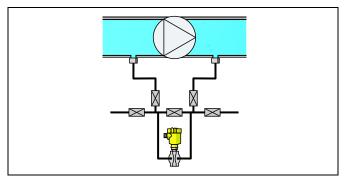


Рис. 24: Измерение дифференциального давления на насосе

VEGADIF 65 применяется для измерения разности давления между входом и выходом насоса. Устройство измеряет дифферециальное давление независимо от статического давления.

7 Электроника - 4 ... 20 mA - двухпроводная

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также штекерный разъем $\rm I^2C$ для параметрирования. В двухкамерном корпусе эти соединительные элементы размещены в отдельном отсеке подключения.

Питание

Подача питания и передача сигнала осуществляются, в зависимости от исполнения, по одному и тому же двухпроводному соединительному кабелю.

В качестве источников питания для датчика рекомендуются устройства VEGATRENN 149AEx, VEGASTAB 690, VEGADIS 371, а также устройства формирования сигнала VEGAMET. При использовании данных устройств как источников питания обеспечивается безопасная развязка цепи питания и сети в соотв. с DIN VDE 0106 ч. 101.

- Рабочее напряжение
 - 12 ... 36 V DC
- Допустимая остаточная пульсация
 - U_{pp} < 1 V (< 100 Hz)
 - $U_{pp} < 10 \text{ mV } (100 \dots 10 \text{ kHz})$

Соединительный кабель

Датчики подключаются посредством стандартного неэкранированного кабеля. Внешний диаметр кабеля 5 ... 9 мм обеспечивает эффект уплотнения кабельного ввода.

В случае возможности электромагнитных помех в промышленных диапазонах (по контрольным значениям EN 61326), рекомендуется использовать экранированный кабель.

Экранирование кабеля и заземление

Если необходимо применить экранированный кабель, то экран кабеля должен быть заземлен с обеих сторон. При вероятности возникновения уравнительных токов, подключение со стороны обработки сигнала должно осуществляться через керамический конденсатор (например, 1 nF, 1500 V).

Подключение (однокамерный корпус)

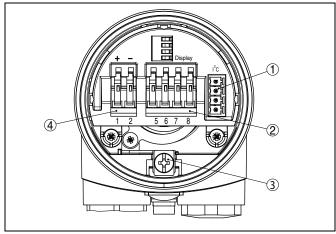


Рис. 25: Отсек электроники и подключения в однокамерном корпусе

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- Пружинные контакты для подключения выносного индикатора VEGADIS
 61
- 3 Клемма заземления для подключения экрана кабеля
- 4 Пружинные контакты для источника питания

Подключение (двухкамерный корпус)

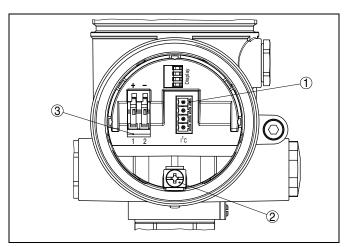


Рис. 26: Отсек подключения (двухкамерный корпус)

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Клемма заземления для подключения экрана кабеля
- 3 Пружинные контакты для источника питания

Электроника - 4 ... 20 mA/HART - двухпроводная 8

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также штекерный разъем I²C для параметрирования. В двухкамерном корпусе эти соединительные элементы размещены в отдельном отсеке подключения.

Питание

Подача питания и передача сигнала осуществляются, в зависимости от исполнения, по одному и тому же двухпроводному соединительному кабелю.

В качестве источников питания для датчика рекомендуются устройства VEGATRENN 149AEx, VEGASTAB 690, VEGADIS 371, а также устройства формирования сигнала VEGAMET. При использовании данных устройств как источников питания обеспечивается безопасная развязка цепи питания и сети в соотв. с DIN VDE 0106 ч.

- Рабочее напряжение
 - 12 ... 36 V DC
- Допустимая остаточная пульсация
 - U_{pp} < 1 V (< 100 Hz)
 - U_{pp} < 10 mV (100 ... 10 kHz)

Соединительный кабель

Датчики подключаются посредством стандартного неэкранированного кабеля. Внешний диаметр кабеля 5 ... 9 мм обеспечивает эффект уплотнения кабельного ввода.

При возможности электромагнитных помех выше контрольных значений для промышленного диапазона по EN 61326, необходимо использовать экранированный кабель. Для работы в многоточечном режиме HART рекомендуется всегда применять экранированный кабель.

Экранирование кабеля и заземление

Если необходимо применить экранированный кабель, то экран кабеля должен быть заземлен с обеих сторон. При вероятности возникновения уравнительных токов, подключение со стороны обработки сигнала должно осуществляться через керамический конденсатор (например, 1 nF, 1500 V).

Подключение (однокамерный корпус)

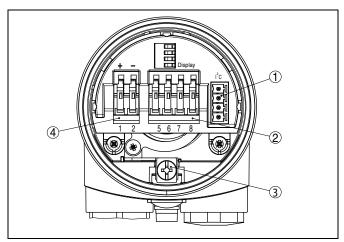


Рис. 27: Отсек электроники и подключения в однокамерном корпусе

- Разъем для VEGACONNECT (интерфейс I²C)
- Пружинные контакты для подключения выносного индикатора VEGADIS
- Клемма заземления для подключения экрана кабеля
- Пружинные контакты для источника питания

Подключение (двухкамерный корпус)

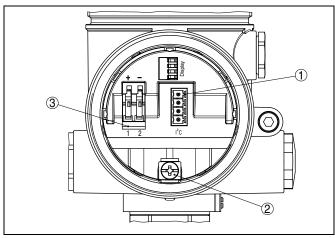


Рис. 28: Отсек подключения (двухкамерный корпус)

- Разъем для VEGACONNECT (интерфейс I²C)
- Клемма заземления для подключения экрана кабеля
- Пружинные контакты для источника питания

9 Электроника - Profibus PA

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также штекерный разъем $\rm I^2C$ для параметрирования. В двухкамерном корпусе эти соединительные элементы размещены в отдельном отсеке подключения.

Питание

Питание осуществляется через шинную линию Н1.

- Рабочее напряжение
 - 9 ... 32 V DC
- Макс. число датчиков с соединителем шинных сегментов DP/PA
 32
- Макс. число датчиков при входной карте VEGALOG 571 EP
 10

Соединительный кабель

Подключение выполняется с помощью экранированного кабеля по Спецификации Profibus. Внешний диаметр кабеля 5 ... 9 мм обеспечивает эффект уплотнения кабельного ввода.

Подключение осуществляется в соответствии со спецификацией Profibus. В частности, необходимо предусмотреть соответствующую оконечную нагрузку шины.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в самом датчике экран должен быть подключен непосредственно к внутренней клемме заземления. Клемма заземления на внутренней стороне корпуса должна быть низкоомно связана с выравниванием потенциалов.

В системах без выравнивания потенциалов кабельный экран на источнике питания и на датчике подключается непосредственно к потенциалу "земли". В соединительной коробке и Т-распределителе экран короткого кабеля, идущего к датчику, не должен быть связан ни с потенциалом "земли", ни с другим экраном. Кабельные экраны к источнику питания и к следующему распределителю должны быть связаны между собой и через керамический конденсатор (напр., 1 нФ, 1500 В) соединены с потенциалом "земли". Тем самым подавляются низкочастотные уравнительные токи, но сохраняется защитный эффект против высокочастотных помех.

Подключение (однокамерный корпус)

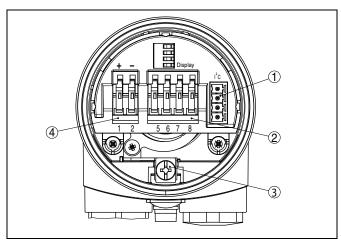


Рис. 29: Отсек электроники и подключения в однокамерном корпусе

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Пружинные контакты для подключения выносного индикатора VEGADIS 61
- 3 Клемма заземления для подключения экрана кабеля
- 4 Пружинные контакты для источника питания

Подключение (двухнамерный корпус)

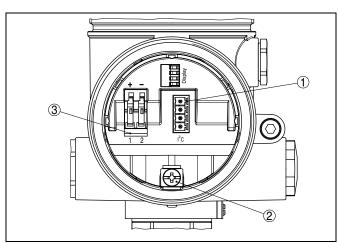


Рис. 30: Отсек подключения (двухкамерный корпус)

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Клемма заземления для подключения экрана кабеля
- 3 Пружинные контакты для источника питания

10 Электроника - Foundation Fieldbus

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также штекерный разъем $\rm I^2C$ для параметрирования. В двухкамерном корпусе эти соединительные элементы размещены в отдельном отсеке подключения.

Питание

Питание осуществляется через шинную линию Н1.

- Рабочее напряжение
 - 9 ... 32 V DC
- Макс. число датчиков
 - 32

Соединительный кабель

Подключение выполняется с помощью экранированного кабеля по Спецификации Fieldbus. Внешний диаметр кабеля 5 ... 9 мм обеспечивает эффект уплотнения кабельного ввода.

Подключение осуществляется в соответствии со спецификацией Fieldbus. В частности, необходимо предусмотреть соответствующую оконечную нагрузку шины.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в самом датчике экран должен быть подключен непосредственно к внутренней клемме заземления. Клемма заземления на внутренней стороне корпуса должна быть низкоомно связана с выравниванием потенциалов.

В системах без выравнивания потенциалов кабельный экран на источнике питания и на датчике подключается непосредственно к потенциалу "земли". В соединительной коробке и Т-распределителе экран короткого кабеля, идущего к датчику, не должен быть связан ни с потенциалом "земли", ни с другим экраном. Кабельные экраны к источнику питания и к следующему распределителю должны быть связаны между собой и через керамический конденсатор (напр., 1 нФ, 1500 В) соединены с потенциалом "земли". Тем самым подавляются низкочастотные уравнительные токи, но сохраняется защитный эффект против высокочастотных помех.

Подключение (однокамерный корпус)

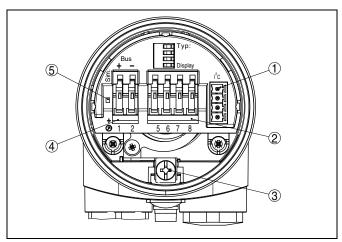


Рис. 31: Отсек электроники и подключения в однокамерном корпусе

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Пружинные контакты для подключения выносного индикатора VEGADIS 61
- 3 Клемма заземления для подключения экрана кабеля
- 4 Контакты для подключения Foundation Fieldbus
- 5 Переключатель моделирования ("on" = режим работы с разрешением моделирования)

Подключение (двухкамерный корпус)

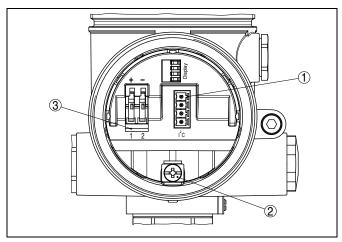


Рис. 32: Отсек подключения (двухкамерный корпус)

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Клемма заземления для подключения экрана кабеля
- Пружинные контакты для источника питания

11 Настройка

11.1 Общий обзор

Настройка датчиков может выполняться с помощью следующих средств:

- Модуль индикации и настройки
- Персональный компьютер с программным обеспечением для настройки, соответствующим стандарту FDT/DTM, например PACTware

А также в зависимости от выходного сигнала:

- Манипулятор HART (4 ... 20 mA/HART)
- Программное обеспечение для настройки AMS (4 ... 20 mA/HART и Foundation Fieldbus)
- Программное обеспечение для настройки PDM (Profibus PA)
- Средство конфигурации (Foundation Fieldbus)

Введенные параметры обычно сохраняются в памяти датчика, также возможно сохранение параметров в памяти модуля или в программном обеспечении для настройки.

11.2 Модуль индикации и настройки PLICSCOM

Съемный модуль индикации и настройки предназначен для индикации измеренных значений, настройки и диагностики. Модуль имеет точечно-матричный дисплей с подсветкой, а также четыре клавиши для настройки.

Рис. 33: Модуль индикации и настройки PLICSCOM

Модуль индикации и настройки устанавливается в корпусе датчика или в выносном блоке индикации и настройки. С установленным модулем индикации и настройки брызгозащищенность обеспечивается, в том числе, без крышки корпуса датчика.

11.3 PACTware/DTM

Конфигурирование может также выполняться с помощью персонального компьютера с программным обеспечением для настройки PACTware с интегрированными в него драйверами устройства (DTM) по стандарту FDT. В состав Коллекции DTM вместе со всеми имеющимися DTM включается текущая версия PACTware. Драйверы DTM могут интегрироваться и в другие программные оболочки, соответствующие стандарту FDT.

Все DTM устройств поставляются в двух версиях: бесплатной стандартной и платной полной версии. Стандартная версия включает все функции для полной начальной установки, Помощник создания проектов, функции сохранения/печати проектов, функции импорта/ экспорта.

Полная версия имеет расширенные возможности печати проектов и функцию сохранения измеренных значений и эхо-кривых. В полную версию также включена программа расчета резервуара и мультивьюер для индикации и анализа сохраненных измеренных значений и эхо-кривых.

Подключение к ПК через VEGACONNECT

Для подключения к ПК требуется интерфейсный адаптер VEGACONNECT. Со стороны компьютера подключение осуществляется через порт USB. VEGACONNECT устанавливается на датчике вместо модуля индикации и настройки, соединение с датчиком при этом выполняется автоматически. Альтернативно датчики 4 ... 20 mA/HART могут также подключаться через сигнал НАRT в любом месте сигнального кабеля.

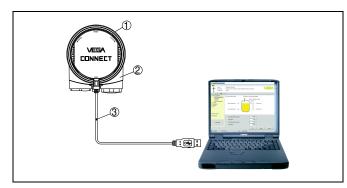


Рис. 34: Подключение через VEGACONNECT и USB

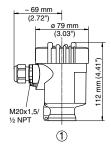
- 1 VEGACONNECT
- 2 Датчик plics[®]
- 3 Кабель USB к ПК

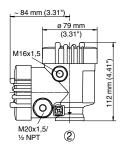
Требуемые компоненты:

- VEGADIF 65
- ПК с PACTware и подходящим DTM
- VEGACONNECT
- Питание/Система формирования сигнала

11.4 Настройна с помощью другого программного обеспечения

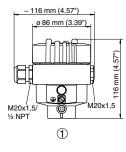
PDM

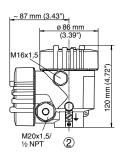

В текущих версиях программного обеспечения PDM имеются описания устройств в виде EDD для датчиков VEGA-Profibus-PA. При использовании предыдущих версий программного обеспечения PDM такие описания устройств можно бесплатно загрузить через Интернет.


AMS

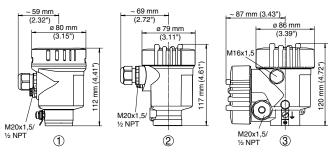
В текущих версиях программного обеспечения AMS^{TM} имеются описания устройств в виде DD для настройки датчиков VEGA-Foundation-Fieldbus. При использовании предыдущих версий программного обеспечения AMS^{TM} такие описания устройств можно бесплатно скачать через Интернет.

12 Размеры


Пластиковый корпус



- 1 Однокамерный корпус
- 2 Двухкамерный корпус


Алюминиевый корпус

- 1 Однокамерный корпус
- 2 Двухкамерный корпус

Корпус из нержавеющей стали

- 1 Однокамерный корпус, электрополированный
- 2 Однокамерный корпус, точное литье
- Двухкамерный корпус, точное литье

VEGADIF 65 - овальный фланец, стандартное исполнение

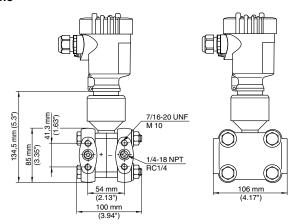


Рис. 35: VEGADIF 65 - измерительные ячейки 10 и 30 mbar

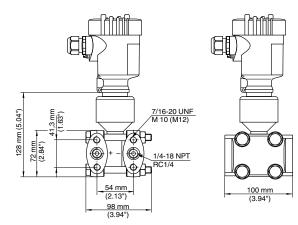


Рис. 37: VEGADIF 65 - измерительные ячейки от 100 mbar

VEGADIF 65 - овальный фланец, выпуск воздуха сбоку

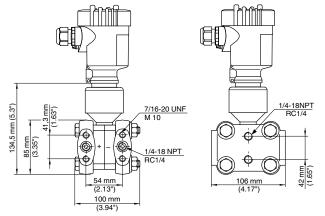


Рис. 39: VEGADIF 65 - измерительные ячейки 10 и 30 mbar

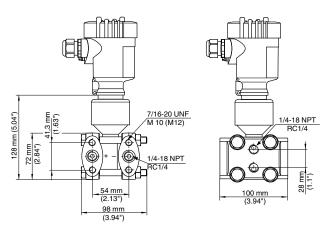


Рис. 41: VEGADIF 65 - измерительные ячейки от 100 mbar

VEGADIF 65 - подготовлен для монтажа изолирующей диафрагмы CSB

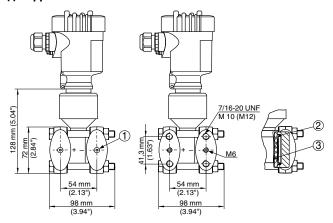


Рис. 43: Слева: Присоединение VEGADIF 65 подготовлено для монтажа изолирующей диафрагмы. Справа: Положение медного уплотнительного кольца

- 1 Монтаж изолирующей диафрагмы
- 2 Медное уплотнительное кольцо
- 3 Мембрана чашечного типа

На чертежах выше показаны только некоторые из возможных типов присоединения. Прочие чертежи можно найти на нашей странице www.vega.com » Downloads » Zeichnungen.

VEGA

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany Phone +49 7836 50-0 Fax +49 7836 50-201 E-mail: info@de.vega.com www.vega.com В разделе Downloads на www.vega.com

- Руководство по эксплуатации
- Лист технических данных
- Программное обеспечение
- Размеры
- Сертификаты
- Разрешения и многое другое

