

Руководство по эксплуатации

VEGASON 65

4 ... 20 mA/HART - четырехпроводный

Document ID: 28782

Содержание

1	О данном руководстве				
	1.1	Функция	4		
	1.2	Назначение	4		
	1.3	Используемые символы	4		
2	В целях безопасности				
	2.1	Требования к персоналу	5		
	2.2	Надлежащее применение	5		
	2.3	Неправильное применение	5		
	2.4	Общие указания по безопасности	5		
	2.5	Маркировка безопасности на устройстве	6		
	2.6	Соответствие требованиям по электромагнитной			
		совместимости	6		
	2.7	Исполнение Рекомендаций NAMUR	6		
	2.8	Указания по безопасности для зон Ех	6		
	2.9	Экологическая безопасность	7		
3	Описание				
	3.1	Комплектность	8		
	3.2	Принцип работы	9		
	3.3	Настройка	9		
	3.4	Упаковка, транспортировка и хранение	10		
4	Монтаж				
	4.1	Общие указания	11		
	4.2	Подготовка к монтажу	14		
	4.3	Рекоментации по монтажу	19		
5	Полі	ключение к источнику питания			
Ŭ		•	25		
	5.1	Подготовка к подключению	26		
	5.2	Порядок подключения	28		
	5.3 5.4	Схема подключения (двухкамерный корпус)	29		
	5.4	Фаза включения	29		
6	Настройка с помощью модуля индикации и настройки PLICSCOM				
	_		04		
	6.1	Краткое описание	31		
	6.2	Установка модуля индикации и настройки	31		
	6.3	Система настройки	33		
	6.4	Порядок пуска в эксплуатацию	34		
	6.5	Схема меню - ультразвуковой датчик	41		
	6.6	Сохранение данных параметрирования	44		
7	Пуск в эксплуатацию с помощью PACTware и другого				
	программного обеспечения для настройки				
	7.1	Подключение ПК через VEGACONNECT	45		
	7.2	Параметрирование в PACTware	47		
	7.3	Параметрирование с помощью AMS™ и PDM	47		

	7.4	Сохранение данных параметрирования	48		
8	Обслуживание и устранение неисправностей				
	8.1	Обслуживание	49		
	8.2	Устранение неисправностей	49		
	8.3	Замена блока электроники	50		
	8.4	Обновление ПО	51		
	8.5	Ремонт прибора	52		
9	Демонтаж				
	9.1	Порядок демонтажа	53		
	9.2	Утилизация	53		
10	Приложение				
	10.1	Технические данные	55		
	10.2	Размеры	61		

Дополнительная документация

Информация:

Дополнительная документация включается в комплект поставки в зависимости от исполнения прибора. См. гл. "Описание".

Руководства для принадлежностей и запасных частей

Рекомендация:

Для обеспечения безопасной эксплуатации VEGASON 65 предлагаются различные принадлежности и запасные части с соответствующей документацией:

- 27835 Модуль индикации и настройки PLICSCOM
- 32628 Интерфейсный адаптер VEGACONNECT
- 27720 Выносной индикатор VEGADIS 61
- 34296 Защитный колпак
- 30176 Блок электроники VEGASON серии 60
- 30205 Передающая электроника VEGASON 64, 65, 66

1 О данном руководстве

1.1 Функция

Данное руководство содержит всю необходимую информацию для монтажа, подключения и пуска в эксплуатацию, а также обслуживания и устранения неисправностей. Перед пуском устройства в эксплуатацию ознакомьтесь с изложенными здесь инструкциями. Руководство по эксплуатации должно храниться в непосредственной близости от места эксплуатации устройства и быть доступно в любой момент.

1.2 Назначение

Данное руководство предназначено для обученного персонала. При работе персонал должен иметь и исполнять изложенные здесь инструкции.

1.3 Используемые символы

Информация, примечания, рекомендации

Символ обозначает дополнительную полезную информацию

Осторожно: Несоблюдение данной инструкции может привести к неисправности или сбою в работе.

Предупреждение: Несоблюдение данной инструкции может нанести вред персоналу и/или привести к повреждению прибора. Опасность: Несоблюдение данной инструкции может привести к серьезному травмированию персонала и/или разрушению прибора.

Применение во взрывоопасных зонах

Символ обозначает специальные инструкции по применению во взрывоопасных зонах.

• Список

Ненумерованный список не подразумевает определенного порядка действий.

→ Действие

Стрелка обозначает отдельное действие.

1 Порядок действий

Нумерованный список подразумевает определенный порядок действий.

2 В целях безопасности

2.1 Требования к персоналу

Данное руководство предназначено только для обученного и допущенного к работе с прибором персонала.

При работе с устройством требуется всегда иметь необходимые средства индивидуальной защиты.

2.2 Надлежащее применение

Уровнемер VEGASON 65 предназначен для непрерывного измерения уровня.

Характеристику области применения см. в гл. "Описание".

Эксплуатационная безопасность устройства обеспечивается только при надлежащем применении в соответствии с данными, содержащимися в руководстве по эксплуатации и имеющихся дополнительных инструкциях.

В целях безопасности и соблюдения гарантийных обязательств любое вмешательство, помимо мер, описанных в данном руководстве, может осуществляться только персоналом изготовителя. Самовольные переделки или изменения категорически запрещены.

2.3 Неправильное применение

Не соответствующее назначению применение прибора является потенциальным источником опасности и может привести, например, к переполнению емкости или повреждению компонентов установки из-за неправильного монтажа или настройки.

2.4 Общие указания по безопасности

Устройство соответствует современным техническим требованиям и нормам безопасности. При эксплуатации необходимо строго соблюдать все установленные требования к монтажу и нормы техники безопасности, а также изложенные в данном руководстве рекомендации по безопасности.

Устройство разрешается эксплуатировать только в исправном и технически безопасном состоянии. Ответственность за безаварийную эксплуатацию лежит на лице, эксплуатирующем устройство.

Лицо, эксплуатирующее устройство, также несет ответственность за соответствие техники безопасности действующим и вновь устанавливаемым нормам в течение всего срока эксплуатации.

2.5 Маркировка безопасности на устройстве

Следует соблюдать нанесенные на устройство обозначения и рекомендации по безопасности.

2.6 Соответствие требованиям по электромагнитной совместимости

Данное устройство выполняет требования норм по электромагнитной совместимости, что подтверждено соответствующим испытанием и нанесением знака СЕ. Заявление о соответствии СЕ см. в разделе загрузок на сайте www.vega.com.

2.7 Исполнение Рекомендаций NAMUR

В отношении совместимости, в том числе и для компонентов индикации и настройки, исполняется Рекомендация NAMUR NE 53. Устройства VEGA совместимы "снизу вверх" и "сверху вниз":

- Программное обеспечение датчика с DTM-VEGASON 65 HART. РА или FF
- DTM-VEGASON 65 с программным обеспечением PACTware
- Модуль индикации и настройки с программным обеспечением датчика

Базовая установка датчика осуществима независимо от версии ПО. Набор функций зависит от имеющейся версии ПО отдельных компонентов.

Версию ПО VEGASON 65 можно определить следующим образом:

- через PACTware
- по типовой табличке электроники
- через модуль индикации и настройки

Архив всех версий ПО можно найти на нашем сайте www.vega.com. Для получения информации об обновлениях ПО по электронной почте рекомендуется зарегистрироваться на нашем сайте.

2.8 Указания по безопасности для зон Ех

Для применения во взрывоопасных зонах следует соблюдать соответствующие требования и разрешения и исполнять указания по безопасности для применения Ех, которые являются составной частью данного руководства по эксплуатации и прилагаются к нему для каждого поставляемого устройства с разрешением Ех.

2.9 Экологическая безопасность

Защита окружающей среды является одной из наших важнейших задач. Принятая на нашем предприятии система экологического контроля сертифицирована в соответствии с DIN EN ISO 14001 и обеспечивает постоянное совершенствование комплекса мер по защите окружающей среды.

Защите окружающей среды будет способствовать соблюдение рекомендаций, изложенных в следующих разделах данного руководства:

- Глава "Упаковка, транспортировка и хранение"
- Глава "Утилизация"

3 Описание

3.1 Комплектность

Комплект поставки

В комплект поставки входят:

- Ультразвуковой уровнемер VEGASON 65
- Отдельный кабельный ввод
- Документация
 - Данное руководство по эксплуатации
 - Руководство по эксплуатации 27835 "Модуль индикации и настройки PLICSCOM" (вариант)
 - "Указания по безопасности" (при исполнении Ex)
 - При необходимости, прочая документация

Составные части

VEGASON 65 состоит из следующих частей:

- преобразователь звука с присоединением (исполнение присоединения: фланец, поворотное крепление или резьба),
- корпус с электроникой (в компактном или выносном исполнении).
- Крышка корпуса, вариант с модулем индикации и настройки PLICSCOM

Компоненты прибора могут иметь различное исполнение.

Исполнение А: компактное, с фланцем

Исполнение В: компактное, с поворотным креплением

Исполнение C: с выносным преобразователем, с поворотным креплением

Исполнение D: с выносным преобразователем, с резьбой

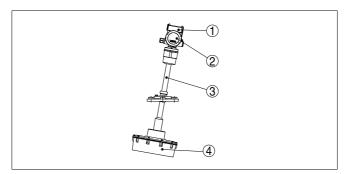


Рис. 1: VEGASON 65 в компактном исполнении с поворотным креплением

- 1 Крышка корпуса с модулем PLICSCOM (вариант)
- 2 Корпус с блоком электроники
- 3 Поворотное крепление с фланцем
- 4 Преобразователь звука

Типовой шильдик

Типовой шильдик содержит важные данные для идентификации и применения прибора:

- Тип устройства
- Артикул и серийный номер устройства
- Числовые коды документации
- Технические данные, например: разрешения, температура процесса, тип присоединения/материал, выход сигнала, питание.
 климатическое исполнение

На сайте <u>www.vega.com</u> через меню "VEGA Tools" и "serial number search" по серийному номеру можно узнать спецификацию устройства при его поставке. Серийный номер также находится внутри устройства.

3.2 Принцип работы

Область применения

Ультразвуковой уровнемер VEGASON 65 предназначен для непрерывного измерения уровня сыпучих продуктов, а также жидкостей.

Принцип действия

Преобразователь ультразвукового датчика посылает короткие ультразвуковые импульсы и принимает их в виде эхо-сигналов, отраженных от поверхности продукта. Время прохождения ультразвукового импульса от отсылки до приема пропорционально расстоянию до поверхности продукта, т.е. уровню. Определенный таким образом уровень преобразуется в соответствующий выходной сигнал и выдается в виде измеренного значения.

Питание

Четырехпроводная электроника с отдельной подачей питания.

Диапазон напряжения питания зависит от исполнения прибора.

Напряжение питания см. в гл. "Технические данные".

Передача измеренных значений осуществляется через выход 4 ... 20 mA/HART, разделенный с подачей питания.

Питание подсветки модуля индикации и настройки осуществляется от датчика. Для этого необходим определенный уровень напряжения питания.

Напряжение питания см. в гл. "Технические данные".

3.3 Настройка

Hастройка VEGASON 65 выполняется:

- посредством модуля индикации и настройки
- с помощью персонального компьютера с программным обеспечением для настройки, соответствующим стандарту FDT/ DTM, например PACTware, и подходящим VEGA-DTM

- через поставляемые соответствующими производителями программы для настройки AMS[™] или PDM
- с помощью манипулятора HART

Введенные параметры обычно сохраняются в памяти датчика VEGASON 65, при настройке с помощью модуля индикации и настройки или ПК и PACTware можно также сохранить параметры в памяти модуля или компьютера.

3.4 Упаковка, транспортировка и хранение

Упаковка

Прибор поставляется в упаковке, обеспечивающей его защиту во время транспортировки. Соответствие упаковки обычным транспортным требованиям проверено по DIN EN 24180.

Упаковка прибора в стандартном исполнении состоит из экологически чистого и поддающегося переработке картона. Для упаковки приборов в специальном исполнении также применяются пенополиэтилен и полиэтиленовая пленка, которые можно утилизировать на специальных перерабатывающих предприятиях.

Транспортировка

Транспортировка должна выполняться в соответствии с указаниями на транспортной упаковке. Несоблюдение таких указаний может привести к повреждению прибора.

Осмотр после транспортировки

При получении доставленное оборудование должно быть незамедлительно проверено в отношении комплектности и отсутствия транспортных повреждений. Установленные транспортные повреждения и скрытые недостатки должны быть соответствующим образом оформлены.

Хранение

До монтажа упаковки должны храниться в закрытом виде и с учетом имеющейся маркировки складирования и хранения.

Если нет иных указаний, необходимо соблюдать следующие условия хранения:

- Не хранить на открытом воздухе
- Хранить в сухом месте при отсутствии пыли
- Не подвергать воздействию агрессивных сред
- Защитить от солнечных лучей
- Избегать механических ударов

Температура хранения и транспортировки

- Температура хранения и транспортировки: см. "Приложение -Технические данные - Окружающие условия"
- Относительная влажность 20 ... 85 %

4 Монтаж

4.1 Общие указания

Соответствие условиям применения

Части устройства, контактирующие с измеряемой средой, а именно: чувствительный элемент, уплотнение и присоединение - должны быть применимы при данных условиях процесса. Необходимо учитывать давление процесса, температуру процесса и химические свойства среды.

Соответствующие данные см. в гл. "Технические данные" или на типовом шильдике.

Монтажное положение

Монтажное положение прибора должно быть удобным для монтажа и подключения, а также доступным для установки модуля индикации и настройки. Корпус прибора можно повернуть без инструмента на 330°. Модуль индикации и настройки также можно установить в одном из четырех положений со сдвигом на 90°.

Наружная влага

Использовать рекомендуемый кабель (см. "*Подключение к источнику питания*") и туго затянуть кабельный ввод.

Для защиты VEGASON 65 от попадания влаги рекомендуется соединительный кабель перед кабельным вводом направить вниз, чтобы влага от дождя или конденсата могла с него стекать. Данные рекомендации применимы при монтаже на открытом воздухе, в помещениях с повышенной влажностью (например, там, где осуществляется очистка), а также на емкостях с охлаждением или подогревом.

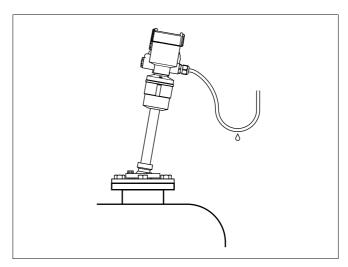


Рис. 2: Меры против попадания влаги

Диапазон измерения

Базовой плоскостью диапазона измерения является нижняя сторона фланца (для Исполнения A) либо нижняя сторона преобразователя звука (для Исполнений B, C и D).

Для всех исполнений необходимо учитывать наличие под базовой плоскостью некоторой мертвой зоны, где измерение невозможно. Точные значения мертвой зоны см. в "*Технических данных*".

Информация:

Если измеряемый продукт доходит до преобразователя звука, то возможно постепенное накопление продукта на преобразователе звука, что позднее может привести к ошибкам измерения.

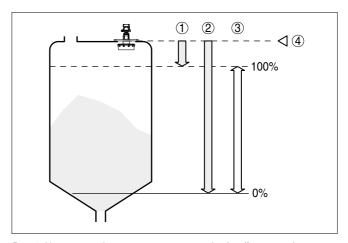


Рис. 3: Исполнение A - диапазон измерения (рабочий диапазон) и максимальное измеряемое расстояние

- 1 "Полно" (мертвая зона)
- 2 "Пусто" (макс. измеряемое расстояние)
- 3 Диапазон измерения
- 4 Базовая плоскость

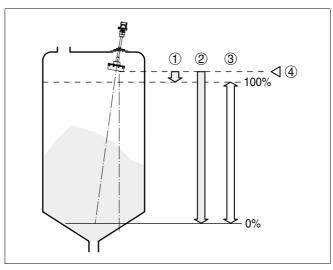


Рис. 4: Исполнение В, С, D - диапазон измерения (рабочий диапазон) и максимальное измеряемое расстояние

- 1 "Полно" (мертвая зона)
- 2 "Пусто" (макс. измеряемое расстояние)
- 3 Диапазон измерения
- 4 Базовая плоскость

Давление/вакуум

Повышенное давление в емкости не влияет на точность измерения с помощью VEGASON 65. При низком давлении или вакууме ультразвуковые импульсы демпфируются, что оказывает влияние на результаты измерения, особенно если уровень низкий. При давлении ниже -0,2 бар (-20 кПа) следует применять другой принцип измерения, например, с помощью радара или направленных микроволн.

4.2 Подготовка к монтажу

Внимание!

Подготовку к монтажу проводить в состоянии **не под напряжением**. В противном случае будет повреждена электроника прибора!

Сборка - Исполнение В

Прибор в исполнении В поставляется в виде комплекта, в который входят две части:

- Преобразователь звука
- Корпус электроники

Для сборки прибора выполнить следующее:

- Торцовым шестигранным ключом (размер 4) ослабить потайные винты на фиксирующем кольце (4) и вынуть трубку преобразователя из поворотного крепления.
- 2 Смонтировать фланец
- 3 Трубку преобразователя звука вставить снизу в поворотное крепление и продвинуть ее до желаемой длины.
- 4 Закрепить трубку с помощью потайных винтов (4), момент затяжки макс. 10 Нм.
- 5 Выдвинуть штекер из корпуса прибора снизу и вставить его в гнездо на трубке преобразователя звука
- 6 Корпус с электроникой насадить на трубку преобразователя звука. При этом не повредить кабель. Корпус установлен правильно, если больше не видно нижней метки (2) на трубке преобразователя.
- 7 Торцовым шестигранным ключом (размер 4) ослабить зажимные винты (5) на корпусе.
- 8 Гаечным ключом (SW 13) ослабить зажимный винт на поворотном держателе (3).
- Посредством поворотного крепления направить датчик на измеряемый продукт.
- 10 Затянуть зажимный винт (3) на поворотном креплении, момент затяжки - макс. 20 Нм.

- 11 Винт (3) зафиксировать лаком или т.п. для обеспечения долговременной устойчивости поворотного крепления.
- 12 Корпус повернуть, так чтобы кабельный ввод смотрел вниз и с него могла стекать влага. Корпус зафиксировать зажимными винтами (5) с моментом затяжки тах. 5 Нм для алюминиевого корпуса и тах. 2 Нм для пластикового корпуса.

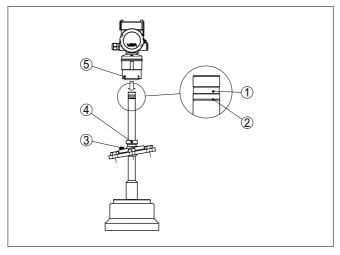


Рис. 5: Сборка - Исполнение В

- 1 Паз для фиксации корпуса
- 2 Насечка
- 3 Зажимный винт поворотного крепления (шестигранная головка SW 13)
- Потайные винты фиксирующего кольца (торцовый шестигранный ключ размер 4)
- 5 Зажимные винты корпуса (торцовый шестигранный ключ размер 4)

Сборка - Исполнение С

Прибор в исполнении С поставляется в виде комплекта, в который входят три части:

- Преобразователь звука
- Кабель преобразователя звука
- Электроника для настенного монтажа

Для сборки прибора выполнить следующее:

- Торцовым шестигранным ключом (размер 4) ослабить потайные винты на фиксирующем кольце (4) и вынуть трубку преобразователя из поворотного крепления.
- 2 Смонтировать фланец
- 3 Трубку преобразователя звука вставить снизу в поворотное крепление и продвинуть ее до желаемой длины.
- 4 Закрепить трубку с помощью потайных винтов (4), момент затяжки макс. 10 Нм.

- 5 Выдвинуть штекер из соединительной насадки снизу и вставить его в гнездо на трубке преобразователя звука
- 6 Соединительную насадку насадить на трубку преобразователя звука. При этом не повредить кабель. Насадка установлена правильно, если больше не видно нижней метки (2) на трубке преобразователя.

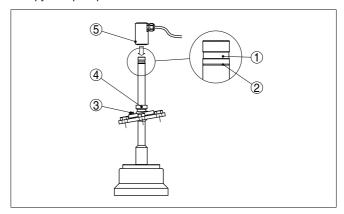


Рис. 6: Сборка - Исполнение С

- 1 Паз для фиксации соединительной насадки
- 2 Насечка
- 3 Зажимный винт поворотного крепления (шестигранная головка SW 13)
- Потайные винты фиксирующего кольца (торцовый шестигранный ключ размер 4)
- 5 Зажимные винты соединительной насадки (торцовый шестигранный ключ - размер 4)
- 7 Торцовым шестигранным ключом (размер 4) ослабить зажимные винты (5) на цилиндре.
- 8 Гаечным ключом (SW 13) ослабить зажимный винт на поворотном держателе (3).
- Посредством поворотного крепления направить датчик на измеряемый продукт.
- 10 Затянуть зажимный винт (3) на поворотном креплении, момент затяжки - макс. 20 Нм.
- 11 Винт (3) зафиксировать лаком или т.п. для обеспечения долговременной устойчивости поворотного крепления.
- 12 Соединительную насадку повернуть так, чтобы кабельный ввод смотрел вниз и с него могла стекать влага. Насадку зафиксировать зажимными винтами (5), момент затяжки макс. 5 Нм.
- 13 Штекер на конце кабеля преобразователя звука вставить в гнездо на выносной электронике.

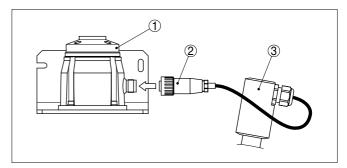


Рис. 7: Штекерный разъем между преобразователем звука и цоколем корпуса с электроникой

- 1 Цоколь корпуса с электроникой
- 2 Штекерный разъем
- 3 Соединительная деталь трубки преобразователя звука

Сборка - Исполнение D

Прибор в исполнении D поставляется в виде комплекта, в который входят три части:

- Преобразователь звука
- Кабель преобразователя звука
- Электроника для настенного монтажа

Для сборки прибора выполнить следующее:

- Ослабить шестигранную гайку (3) на трубке преобразователя звука.
- 2 Трубку преобразователя звука снизу вставить в монтажное отверстие G1 A
- 3 Завинтить (SW 46) шестигранную гайку (3).
- 4 Выдвинуть штекер из соединительной насадки снизу и вставить его в гнездо на трубке преобразователя звука

5 Соединительную насадку насадить на трубку преобразователя звука. При этом не повредить кабель. Насадка установлена правильно, если больше не видно нижней метки (2) на трубке преобразователя.

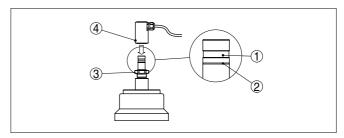


Рис. 8: Сборка - Исполнение D

- 1 Паз для фиксации соединительной насадки
- 2 Насечка
- 3 Шестигранная гайка SW 46
- 4 Зажимные винты соединительной насадки (торцовый шестигранный ключ - размер 4)
- 6 Торцовым шестигранным ключом (размер 4) ослабить зажимные винты (4) на цилиндре.
- 7 Соединительную насадку повернуть так, чтобы кабельный ввод смотрел вниз и с него могла стекать влага. Насадку зафиксировать зажимными винтами (4), момент затяжки макс. 5 Нм.
- 8 Штекер на конце кабеля преобразователя звука вставить в гнездо на выносной электронике.

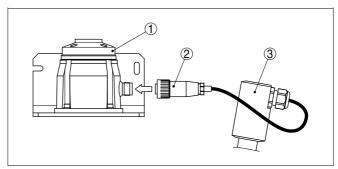


Рис. 9: Штекерный разъем между преобразователем звука и цоколем корпуса с электроникой

- 1 Цоколь корпуса с электроникой
- 2 Штекерный разъем
- 3 Соединительная деталь трубки преобразователя звука

4.3 Рекоментации по монтажу

Монтажное положение

При монтаже VEGASON 65 расстояние от стенки емкости должно составлять минимум 500 мм. При монтаже уровнемера в центре выпуклой крыши емкости возможны множественные эхосигналы, селекцию которых можно осуществить с помощью соответствующей настройки (см. "Пуск в эксплуатацию").

Если указанное выше расстояние обеспечить невозможно (особенно если вероятно накопление осадка продукта на стенке емкости), то во время настройки необходимо создать память помех. Рекомендуется повторно создать память помех с уже накопившимся осадком на стенке емкости.

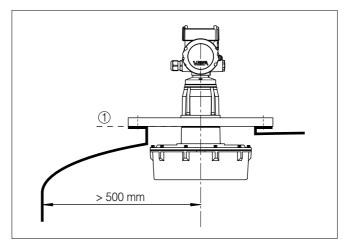


Рис. 10: Монтажное положение

1 Базовая плоскость

На емкостях с коническим днищем рекомендуется ориентировать датчик на середину емкости, чтобы измерение было возможно на ее полную глубину.

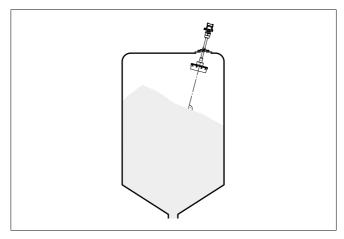


Рис. 11: Емкость с коническим днищем

Патрубок

Преобразователь звука рекомендуется монтировать без патрубка заподлицо на крыше емкости.

На продуктах с хорошими отражательными свойствами VEGASON 65 можно монтировать на патрубках. В этом случае конец патрубка должен быть гладким, без заусенцев и, по возможности, закругленным. При этом необходимо создать память ложных эхо-сигналов.

Ориентация датчика

Для достижения оптимальных результатов измерения на жидкостях датчик необходимо устанавливать вертикально по отношению к поверхности продукта.

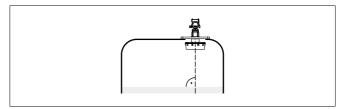


Рис. 12: Ориентация датчика на жидкостях

Для обеспечения оптимальной ориентации датчика относительно поверхности сыпучего продукта можно использовать поворотное крепление.

Конструкции в емкости

При выборе монтажного положения для ультразвукового датчика следует учитывать, что находящиеся в емкости конструкции, например: лестницы, предельные выключатели, нагревательные спирали, подпорки и т.п. - могут вызывать ложные эхо-сигналы, которые накладываются на полезный эхо-сигнал.

Монтажное положение датчика должно быть таким, чтобы на пути распространения ультразвукового сигнала до поверхности продукта, по возможности, не оказывалось указанных препятствий.

Если в емкости имеются внутренние конструкции, необходимо создать память ложных эхо-сигналов.

Ложные эхо-сигналы от стоек и подпорок в емкости можно ослабить с помощью установленных над этими конструкциями небольших наклонных экранов из листового металла или пластика, которые будут рассеивать ультразвуковые сигналы и тем самым предотвращать зеркальное ложное отражение.

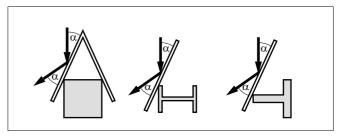


Рис. 13: Отражатели над конструкциями в емкости

Мешалки

Для емкости с мешалками следует создать память ложных эхосигналов при работающих мешалках. В этом случае ложные отражения запоминаются при различных положениях мешалок.

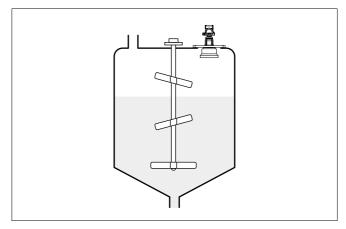


Рис. 14: Мешалки

Насыпи

Уровень больших насыпей можно измерять с помощью нескольких датчиков, смонтированных, например, на кран-балке. При наличии насыпных конусов, датчики нужно направить, по возможности, перпендикулярно по отношению к поверхности продукта.

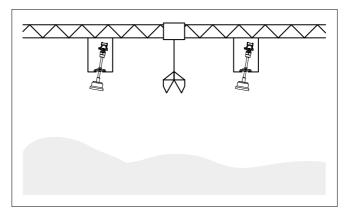


Рис. 15: Преобразователь звука на кран-балке

Втекающий продукт

Не следует монтировать прибор над втекающим в емкость потоком продукта. Убедитесь, что датчик обнаруживает поверхность продукта, а не льющуюся струю.

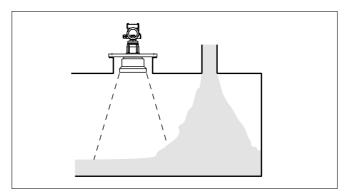


Рис. 16: Втекающий продукт

Пена

Густая пена, образующаяся на поверхности продукта при заполнении емкости, работе мешалок и других процессах, может значительно поглощать излучаемый сигнал.

Если пенообразование может привести к ошибкам измерения, рекомендуется устанавливать датчик в опускной трубе или применять датчики, реализующие принцип измерения посредством направленных микроволн.

Пена не оказывает влияния на измерение посредством направленных микроволн, поэтому в условиях пенообразования особенно применимы радарные уровнемеры, реализующие принцип измерения посредством направленных микроволн.

Воздушные потоки

Если в емкости возможны мощные воздушные потоки, например, из-за ветра при монтаже на открытом воздухе или вследствие использования циклонной вытяжки, рекомендуется установить VEGASON 65 в опускной трубе или использовать иной принцип измерения, например с помощью радара или направленных микроволн.

Тепловые колебания

Сильные тепловые колебания, например, из-за переменного солнечного освещения, могут привести к ошибкам измерения. В этом случае необходимо обеспечить солнцезащиту.

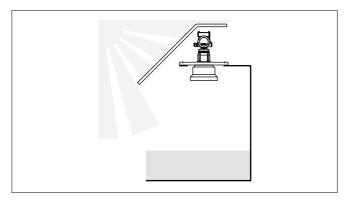


Рис. 17: Тепловые колебания

5 Подключение к источнику питания

5.1 Подготовка к подключению

Техника безопасности

Основные указания по безопасности:

- Подключать только при отсутствии напряжения
- Если возможны перенапряжения, установить защиту от перенапряжений.

Рекомендация:

Рекомендуются устройства защиты от перенапряжений VEGA В 63-48 и ÜSB 62-36G X

Указания по безопасности для зон Ex

Для применения во взрывоопасных зонах должны соблюдаться соответствующие нормы и условия сертификатов соответствия и утверждения типа датчиков и источников питания.

Напряжение питания

Исходя из требования безопасной развязки, источник питания с напряжением сети и токовый выход подключаются через отдельные двухпроводные кабели. Диапазон напряжения питания зависит от исполнения прибора.

Напряжение питания см. в гл. "Технические данные".

Данное устройство исполнено с защитой по Классу I. Для обеспечения такого класса защиты необходимо, чтобы защитный провод был обязательно подключен к внутренней клемме для подключения защитного провода. При этом следует соблюдать общие требования к электропроводке.

Прибор должен быть связан с "землей" емкости (выравнивание потенциалов) или, в случае пластиковой емкости, с ближайшим потенциалом "земли". Для этого на корпусе прибора имеется клемма заземления.

Соединительный кабель

Для подачи питания требуется разрешенный для электропроводки кабель с РЕ-проводом.

Для подключения токового выхода 4 ... 20 mA может использоваться стандартный двухпроводный неэкранированный кабель. В случае возможности электромагнитных помех в промышленных диапазонах (по контрольным значениям EN 61326), рекомендуется использовать экранированный кабель.

Использовать кабель круглого сечения. Внешний диаметр кабеля 5 ... 9 мм (0.2 ... 0.35 in) обеспечивает эффект уплотнения кабельного ввода. При применении кабеля другого сечения или диаметра необходимо заменить уплотнение кабельного ввода или использовать подходящий кабельный ввод.

25

Экранирование кабеля и заземление

При необходимости экранированного кабеля, кабельный экран следует заземлить с обеих сторон. В датчике экран подключается непосредственно к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с уравнителем потенциалов.

При вероятности возникновения уравнительных токов, подключение со стороны вторичного устройства должно осуществляться через керамический конденсатор (например, 1 nF, 1500 V). Тем самым подавляются низкочастотные уравнительные токи, но сохраняется защитный эффект против высокочастотных помех.

Соединительный кабель для зон Ex

Для применения во взрывоопасных зонах соединительный кабель должен отвечать соответствующим требованиям. Следует исключить возможность уравнительных токов в кабельном экране. При заземлении с обеих сторон это достигается за счет применения конденсатора или отдельного уравнителя потенциалов.

5.2 Порядок подключения

Внимание!

Перед подключением к питанию штекерный разъем между преобразователем звука и выносной электроникой соединяется в состоянии **не под напряжением** (см. рис. ниже). В противном случае электроника будет повреждена!

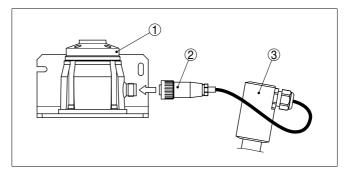


Рис. 18: Штекерный разъем между преобразователем звука и цоколем корпуса с электроникой

- 1 Цоколь корпуса с электроникой
- 2 Штекерный разъем
- 3 Соединительная деталь трубки преобразователя звука

После этого датчик можно подключать к питанию.

Выполнить следующее:

1 Отвинтить крышку корпуса.

- 2 Ослабить гайку кабельного ввода.
- 3 Удалить примерно 10 см обкладки соединительного кабеля токового выхода, концы проводов зачистить примерно на 1 см.
- 4 Вставить кабель в датчик через кабельный ввод.
- 5 С помощью отвертки поднять рычажки контактов.
- 6 Провода вставить в открытые контакты в соответствии со схемой подключения.
- 3 Закрыть контакты, нажав на рычажки, при этом должен быть слышен щелчок пружины контакта.
- 8 Слегка потянув за провода, проверить надежность их закрепления в контактах
- 9 Экран подключить к внутренней клемме заземления, а внешнюю клемму заземления соединить с уравнителем потенциалов.
- 10 Туго затянуть гайку кабельного ввода. Уплотнительное кольцо должно полностью облегать кабель.
- 11 Соединительный кабель для подачи питания подключить таким же способом согласно схеме подключения, дополнительно соединить защитный провод с внутренней клеммой заземления.
- 12 Завинтить крышку корпуса.

Электрическое подключение выполнено.

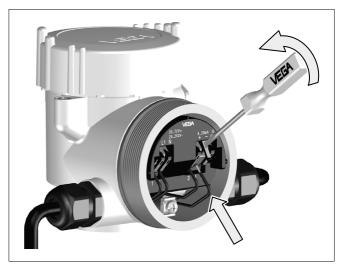


Рис. 19: Подключение: шаги 5 и 6

5.3 Схема подключения (двухкамерный корпус)

Обзор корпусов

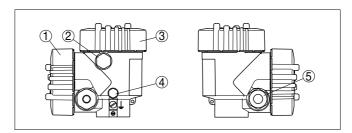


Рис. 20: Двухкамерный корпус

- Крышка отсека подключения
- 2 Заглушка или разъем M12 x 1 для VEGADIS 61 (вариант)
- 3 Крышка отсека электроники
- 4 Фильтр для компенсации давления
- 5 Кабельный ввод

Отсек электроники

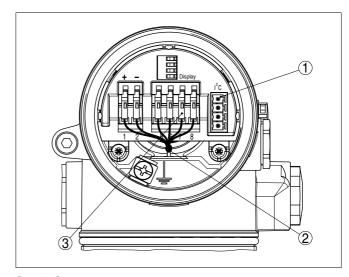


Рис. 21: Отсек электроники в двухкамерном корпусе

- 1 Разъем для VEGACONNECT (интерфейс I²C)
- 2 Внутреннее соединение с отсеком подключения
- 3 Контакты для подключения VEGADIS 61

Отсек подключения

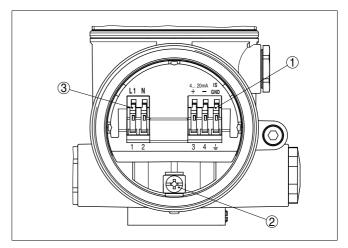


Рис. 22: Отсек подключения (двухкамерный корпус)

- 1 Контакты для выхода сигнала
- 2 Клемма заземления для подключения защитного провода и экрана
- 3 Подпружиненные контакты для источника питания

Схема подключения

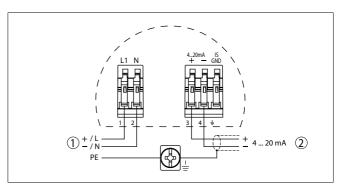


Рис. 23: Схема подключения (двухкамерный корпус)

- 1 Питание
- 2 Выход сигнала

5.4 Фаза включения

Фаза включения

В течение прибл. 30 сек. после подключения VEGASON 65 к источнику питания или после восстановления напряжения выполняется самопроверка прибора и происходит следующее:

• Внутренняя проверка электроники

- индикация типа устройства, версии ПО и тега (обозначения) датчика
- кратковременный (10 сек.) скачок выходного сигнала до установленного значения отказа

Затем выдается соответствующий токовый сигнал (значение соответствует действительному уровню и уже выполненным установкам, например заводской установке).

6 Настройка с помощью модуля индикации и настройки PLICSCOM

6.1 Краткое описание

Назначение/конфигурация

Модуль индикации и настройки PLICSCOM предназначен для индикации измеренных значений, настройки и диагностики. Модуль может быть установлен в следующих устройствах:

- Любой датчик семейства plics[®] (модуль устанавливается в однокамерном корпусе либо в двухкамерном корпусе в отсеке электроники или в отсеке подключения)
- Выносной блок индикации и настройки VEGADIS 61

Аппаратные версии ...- 01 или выше модуля PLICSCOM и датчика обеспечивают функцию подсветки дисплея модуля, которая активируется через операционное меню. Версия обозначена на типовом шильдике модуля PLICSCOM и на блоке электроники датчика.

i

Информация:

Данная функция для приборов с разрешением StEx, WHG, FM или CSA, а также для применения на судах в текущем исполнении не поддерживается.

Примечание:

Подробное описание порядка настройки см. в Руководстве по эксплуатации модуля индикации и настройки PLICSCOM.

6.2 Установка модуля индикации и настройки

Установка/снятие модуля индикации и настройки

Модуль индикации и настройки можно установить на датчике и снять с него в любой момент. Для этого не нужно отключать питание.

Выполнить следующее:

- 1 Отвинтить крышку корпуса.
- Установить модуль индикации и настройки в желаемое положение на электронике (возможны четыре положения со сдвигом на 90°).
- 3 Установить модуль индикации и настройки на электронике и слегка повернуть вправо до щелчка.
- 4 Туго завинтить крышку корпуса со смотровым окошком.

Для демонтажа выполнить описанные выше действия в обратном порядке.

Питание модуля индикации и настройки осуществляется от датчика.

28782-RU-100511

VEGASON 65 • 4 31

Рис. 24: Установка модуля индикации и настройки

Примечание:

При использовании установленного в устройстве модуля индикации и настройки для местной индикации требуется более высокая крышка корпуса со смотровым окошком.

6.3 Система настройки

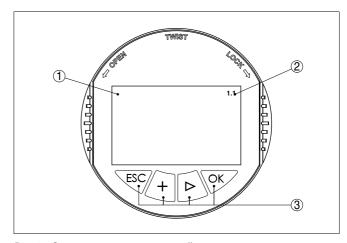


Рис. 25: Элементы индикации и настройки

- 1 ЖК-дисплей
- 2 Индикация номера пункта меню
- 3 Клавиши настройки

Функции клавиш

Клавиша [ОК]:

- переход к просмотру меню
 - подтверждение выбора меню
- редактирование параметра
- сохранение значения

Клавиша [->]:

- смена меню
- перемещение по списку
- выбор позиции для редактирования

Клавиша [+]:

- изменение значения параметра

Клавиша [ESC]:

- отмена ввода
- возврат в прежнее меню

Система настройки

Прибор настраивается с помощью четырех клавиш и дисплея модуля индикации и настройки. Функции клавиш показаны на рисунке выше. Через 10 минут после последнего нажатия любой клавиши автоматически происходит возврат к отображению измеренных значений. Введенные значения, не подтвержденные нажатием [ОК], будут потеряны.

28782-RU-100511

28782-RU-100511

6.4 Порядок пуска в эксплуатацию

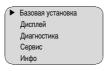
Задание адреса для работы в многоточечном режиме HART При работе в многоточечном режиме HART (несколько датчиков на одном входе) сначала необходимо осуществить установку адресов (см. "Руководство по эксплуатации модуля индикации и настройки" либо онлайновую справку PACTware или DTM).

Параметрирование

При измерении с помощью VEGASON 65 определяется расстояние от датчика до поверхности продукта. Для отображения уровня нужно задать соответствие между расстоянием до поверхности и уровнем заполнения в процентах. С этой целью вводятся значения расстояния для полной и пустой емкости. Если эти значения неизвестны, то можно задать значения расстояния, например, для 10 % и 90 %заполнения. Базовой плоскостью для значений расстояния является нижняя поверхность фланца (при фланцевом исполнении) или нижняя сторона преобразователя звука (при других исполнениях).

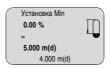
Данная установка используется для вычисления реального уровня, а также для ограничения рабочего диапазона датчика до требуемого интервала.

Для установки Min./Max. фактический уровень не имеет значения: такая настройка всегда осуществляется без изменения уровня и может проводиться еще до монтажа прибора на месте измерения.


Для установки оптимальных параметров измерения необходимо, последовательно выбирая пункты в меню "Базовая установка", ввести соответствующие значения.

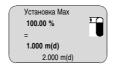
Установка параметров начинается с меню "Базовая установка".

Установка Min.


Выполнить следующее:

 Нажатием [OK] перейти от индикации измеренных значений в главное меню.

 С помощью [->] выбрать меню Базовая установка и подтвердить нажатием [OK]. На дисплее появится меню "Установка Min".



- 3 Для изменения процентного значения нажать [OK] и с помощью [->] установить курсор на нужную позицию. С помощью [+] ввести необходимое процентное значение и сохранить его нажатием [OK]. Курсор теперь переходит на значение расстояния.
- 4 Ввести соответствующее данному процентному значению значение расстояния в метрах для пустой емкости (например, расстояние от датчика до дна емкости).
- 5 Подтвердить выполненную установку клавишей [OK] и с помощью [->] перейти к установке Мах.

Установка Мах.


Выполнить следующее:

- Для изменения процентного значения нажать [OK] и с помощью [->] установить курсор на нужную позицию. С помощью [+] ввести необходимое процентное значение и сохранить его нажатием [OK]. Курсор теперь переходит на значение расстояния.
- Ввести соответствующее значение расстояния в метрах для полной емкости. Максимальный уровень должен быть ниже мертвой зоны.
- 3 Сохранить установку клавишей [OK] и с помощью [->] перейти к выбору измеряемой среды.

Выбор среды

Каждая измеряемая среда имеет различные отражательные свойства. На характер отражения влияют также некоторые состояния среды: для жидкостей – это волнение поверхности и пенообразование, для сыпучих продуктов – насыпной конус, пылеобразование и дополнительные отражения от стенок емкости. Для адаптации прибора к условиям измерения необходимо в этом меню выбрать "Жидкость" или "Сыпучий продукт".

28782-RU-100511

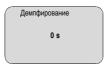
VEGASON 65 • 4 35

Для сыпучих продуктов можно дополнительно выбрать "Порошок/пыль", "Гранулы/таблетки" или "Щебень/гравий".

Данная настройка позволяет повысить надежность измерения, особенно на средах со слабыми отражательными свойствами.

После ввода необходимых параметров сохранить установку и с помощью клавиши *[->]* перейти к следующему пункту меню.

Форма емкости


Геометрия емкости может также влиять на надежность измерения. Для дополнительной адаптации прибора к условиям измерения нужно выбрать соответствующий тип емкости. Подменю типов емкости различаются в зависимости от выбора измеряемой среды: для установки "Жидкость" - это "Резервуар", "Измерит. труба", "Открытая емкость" или "Емкость с мешалкой", для установки "Сыпучий продукт" - это "Силос" или "Бункер".

После ввода необходимых параметров сохранить установку и с помощью клавиши [->] перейти к следующему пункту меню.

Демпфирование

Для устранения колебаний значений на дисплее, например в связи с волнением поверхности продукта, можно отрегулировать демпфирование, установив его в пределах от 0 до 999 секунд. При этом следует учитывать, что время реакции полного измерения и задержки реакции на быстрое изменение измеряемых величин также увеличится. Обычно для выравнивания дисплея измеренных значений достаточно нескольких секунд.

После ввода необходимых параметров сохранить установку и с помощью клавиши [->] перейти к следующему пункту меню.

Кривая линеаризации

Линеаризация необходима в том случае, когда требуется индикация или вывод измеренных значений в единицах объема, а объем емкости изменяется нелинейно по отношению к уровню ее заполнения, например когда емкость горизонтальная цилиндрическая или сферическая. Для таких типов емкостей заданы кривые линеаризации, представляющие отношение между уровнем заполнения в процентах и объемом емкости. При активировании соответствующей кривой линеаризации на дисплей вы-

водятся правильные процентные значения объема. Для отображения объема не в процентах, а, например, в литрах или килограммах, можно дополнительно в меню "Дисплей" задать пересчет.

После ввода необходимых параметров сохранить установку и с помощью клавиши [->] перейти к следующему пункту меню.

ТЕГ датчика

В этом пункте меню можно ввести ясное обозначение датчика, например наименование места измерения, продукта или емкости. В цифровых системах и в документации для больших установок такое обозначение вводится для точной идентификации отдельных мест измерения.

На этом базовая установка завершена и с помощью клавиши **[ESC]** можно вернуться в главное меню.

Память помех

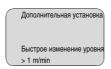
Высокие патрубки или конструкции в емкости, например подпорки или мешалки, а также осадок продукта или сварные швы на стенках емкости могут вызывать ложные отражения. Такие ложные отраженные сигналы можно сохранить в памяти помех, и они будут игнорироваться при измерении. При создании памяти помех уровень продукта в емкости должен быть минимальным, тогда будут обнаружены все возможные ложные отражения.

Выполнить следующее:

- Нажатием [OK] перейти от индикации измеренных значений в главное меню.
- 2 С помощью [->] выбрать меню Сервис и подтвердить нажатием [ОК]. На дисплее появится меню "Память помех".

28782-RU-100511

VEGASON 65 • 4 37


Подтвердить выбор меню "Память помех - изменить сейчас" клавишей **[OK]** и в открывшемся подменю выбрать "Создать снова". Ввести фактическое расстояние от датчика до поверхности продукта. Нажатием [ОК] будут сохранены все ложные эхо-сигналы в пределах этого расстояния.

Примечание:

Проверьте расстояние до поверхности продукта. Если ввести неправильное (слишком большое) значение, актуальный уровень сохранится в памяти как помеха и на указанном расстоянии уровень определяться более не будет.

Дополнительные установки/Быстрое изменение уровня

Через меню "Дополнительная установка" можно оптимизировать VEGASON 65 для применения с быстрым изменением уровня. Для этого необходимо выбрать функцию "Быстрое изменение уровня > 1 m/min.".

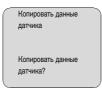
Примечание:

Установка функции "Быстрое изменение уровня > 1 m/min." значительно редуцирует усреднение при формировании сигнала, вследствие чего ложные отраженные сигнала из-за мешалок или конструкций в емкости могут привести к отклонению измеренного значения. Поэтому рекомендуется создать память ложных эхо-сигналов.

Копировать данные датчика

Эта функция позволяет считывать данные из датчика и записывать данные в датчик через модуль индикации и настройки. См. "Руководство по эксплуатации модуля индикации и настройки".

С помощью этой функции можно считывать и записывать следующие данные:


- Представление измереннного значения
- Установка
- Среда
- Форма емкости
- Демпфирование
- Кривая линеаризации
- ТЕГ датчика
- Отображаемое значение
- Единицы дисплея
- Пересчет
- Токовый выход
- Единицы установки

28782-RU-100511

• Язык

Не будут считываться или записываться релевантные для безопасности данные:

- Режим HART
- PIN

Сброс

Базовая установка

При выполнении функции "Сброса" значения параметров датчика восстанавливаются в соответствии со следующей таблицей:¹⁾

Функция	Значение сброса
Адрес датчика	126
Установка Мах	0 m(d)
Установка Min	Конец диапазона измерения, m(d) ²⁾
Среда	Жидкость
Форма емкости	неизвестно
Демпфирование	0 s
Линеаризация	линейная
ТЕГ датчика	Датчик
Отображаемое значение	Расстояние
Токовый выход - характеристика	4 20 mA
Токовый выход - макс. ток	20 mA
Токовый выход - мин. ток	4 mA
Токовый выход - неисправность	< 3,6 mA
Единицы установки	m(d)

При выполнении "*Сброса*" **не** сбрасываются значения следующих установок (см. таблицу):

39

VEGASON 65 • 4

¹⁾ Базовая установка датчика.

²⁾ В зависимости от типа датчика, см. "Технические данные".

Функция	Значение сброса
Подсветка	Не сбрасывается
Язык	Не сбрасывается
Режим HART	Не сбрасывается

Заводская установка

Выполняется такой же сброс, как при базовой установке, а также восстанавливаются значения по умолчанию для специальных параметров.3)

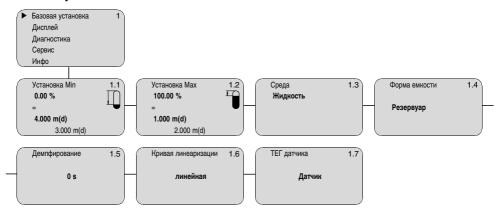
Пиковые значения

Минимальное и максимальное значения расстояния и температуры сбрасываются до текущего значения.

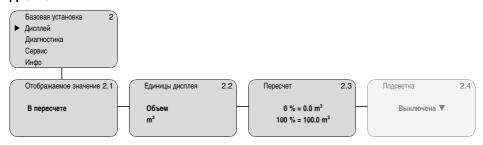
Дополнительные настройки

Дополнительные возможности настройки и диагностики, например: пересчет отображаемых значений, моделирование или запись и воспроизведение трендов, - показаны на представленной далее схеме меню. Подробное описание меню приведено в Руководстве по эксплуатации "Модуля индикации и настройки".

Специальные параметры - это параметры, которые устанавливаются на сервисном уровне с помощью программного обеспечения РАСТware.


6.5 Схема меню - ультразвуковой датчик

i

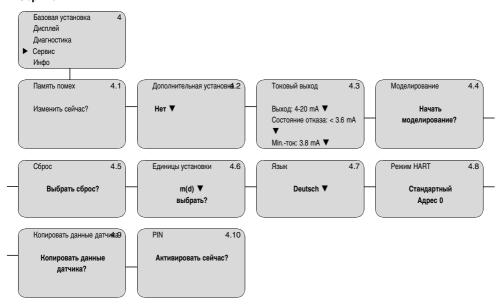

Информация:

Доступность меню, показанных в светлых блоках, зависит от исполнения прибора и выбранного применения.

Базовая установка

Дисплей

28782-RU-100511


VEGASON 65 • 4 41

Диагностика

Сервис

Инфо

28782-RU-100511

VEGASON 65 • 4 43

6.6 Сохранение данных параметрирования

В целях повторного использования и настройки рекомендуется записать данные установки, например, в этом руководстве по эксплуатации, а также сохранить их в архиве.

При наличии модуля индикации и настройки данные установки VEGASON 65 можно считывать из датчика и сохранять их в модуле (см. Руководство по эксплуатации "Модуль индикации и настройки", меню "Копировать данные датчика"). Данные долговременно сохраняются в модуле, в том числе при отсутствии питания датчика.

При замене датчика модуль индикации и настройки устанавливается на новом датчике, и сохраненные в модуле настройки данные установки записываются в новый датчик также через меню "Копировать данные датчика".

7 Пуск в эксплуатацию с помощью PACTware и другого программного обеспечения для настройки

7.1 Подключение ПК через VEGACONNECT

Внутреннее подключение через интерфейс I^2C

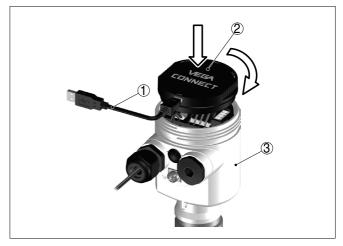


Рис. 26: Подключение ПК прямо к датчику через VEGACONNECT

- 1 Кабель USB к ПК
- 2 VEGACONNECT
- 3 Датчик

Внешнее подключение через интерфейс I²C

Рис. 27: Подключение через соединительный кабель I²C

- 1 Интерфейс шины I²C (Com.) на датчике
- 2 Соединительный кабель I²C интерфейсного адаптера VEGACONNECT
- 3 VEGACONNECT
- 4 Кабель USB к ПК

Требуемые компоненты:

- VEGASON 65
- ПК с PACTware и подходящим VEGA-DTM
- VEGACONNECT
- Источник питания или устройство формирования сигнала

Подключение через HART

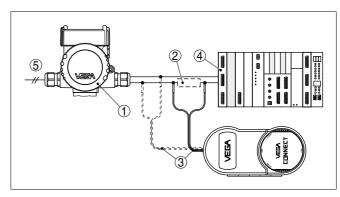


Рис. 28: Подключение ПК к сигнальному кабелю через HART

- 1 VEGASON 65
- 2 Сопротивление НАЯТ 250 Ω (дополнительно, в зависимости от устройства формирования сигнала)
- 3 Соединительный кабель с 2 миллиметровыми штекерами и зажимами
- 4 Система формирования сигнала/ПЛК/Питание

Требуемые компоненты:

- VEGASON 65
- ПК с PACTware и подходящим VEGA-DTM
- VEGACONNECT 4
- Сопротивление HART прибл. 250 Ω
- Источник питания или устройство формирования сигнала

• Примечание: Пля источник

7.2 Параметрирование в PACTware

Параметрирование с помощью "*Коллекции DTM/PACTware*" описано в соответствующем руководстве, которое поставляется вместе с CD, а также может быть загружено с нашей домашней страницы. Подробную информацию см. также в онлайновой справке PACTware и VEGA-DTM.

• Прим • Для г

Примечание:

Для параметрирования VEGASON 65 необходима текущая версия Коллекции DTM.

Текущие версии VEGA-DTM в виде Коллекции DTM поставляются на CD вместе с текущей версией PACTware. Коллекцию DTM в базовой версии вместе с PACTware можно также бесплатно скачать через Интернет.

Загрузка осуществляется с сайта <u>www.vega.com</u> через меню "Downloads" - "Software".

7.3 Параметрирование с помощью AMS™ и PDM

Для настройки датчиков VEGA с помощью программного обеспечения AMS $^{\text{TM}}$ и PDM имеются описания устройств в виде DD или EDD. Такие описания устройств уже содержатся в текущих версиях программного обеспечения AMS $^{\text{TM}}$ и PDM. Для старых версий AMS $^{\text{TM}}$ и PDM описания устройств можно бесплатно скачать через Интернет.

Загрузка осуществляется с сайта <u>www.vega.com</u> через меню "Downloads" - "Software".

7.4 Сохранение данных параметрирования

Рекомендуется записать или сохранить данные параметрирования датчика для дальнейшего использования или настройки.

Лицензированная профессиональная версия Коллекции VEGA DTM и PACTware обеспечивает возможности сохранения и печати проектов.

8 Обслуживание и устранение неисправностей

8.1 Обслуживание

При использовании по назначению и нормальной эксплуатации особое обслуживание не требуется.

8.2 Устранение неисправностей

Меры по устранению неисправностей

Лицо, эксплуатирующее устройство, должно принять соответствующие меры для устранения возникших неисправностей.

Причины отказов

Работа устройства характеризуется высокой надежностью. Однако возможны отказы, источником которых может стать:

- Датчик
- Технологический процесс
- Питание
- Формирование сигнала

Устранение неисправностей

В случае отказа сначала необходимо проверить выходной сигнал, а также сообщения об ошибках на модуле индикации и настройки. Более широкие возможности диагностики имеются при использовании ПК с PACTware и подходящим DTM. В большинстве случаев это позволяет установить и устранить причину отказа.

24-часовая сервисная горячая линия

При необходимости консультаций можно обратиться на сервисную горячую линию VEGA по тел.+49 1805 858550.

Горячая линия работает круглосуточно семь дней в неделю. Консультации даются на английском языке. Консультации бесплатные (без учета платы за телефонный звонок).

Проверка сигнала 4 ... 20 mA

Подключить переносной мультиметр в подходящем измерительном диапазоне в соответствии со схемой подключения.

- ? Сигнал 4 ... 20 mA неустойчивый
 - Колебания уровня
 - Установить демпфирование с помощью модуля индикации и настройки
- ? Сигнал 4 ... 20 mA отсутствует
 - Неправильное подключение
 - → Проверить подключение согласно п. "Порядок подключения" и, при необходимости, исправить в соответствии с п. "Схема подключения"

28782-RU-100511

- Отсутствует питание
- → Проверить целостность кабелей и, при необходимости. отремонтировать
- Слишком низкое рабочее напряжение или слишком высокое сопротивление нагрузки
- → Проверить и, при необходимости, отрегулировать
- ? Токовый сигнал выше 22 mA или ниже 3,6 mA
 - Дефектный блок электроники
 - Заменить устройство или отправить его на ремонт

При применении во взрывоопасных зонах следует учитывать требования к межкомпонентным соединениям искробезопасных цепей.

Сообщения об ошибках на модуле индикации и настройки

? F013

- Отсутствует измеренное значение
- → Датчик в фазе загрузки
- → Датчик не обнаруживает эхо-сигнал, напр., из-за ошибки монтажа или неправильной установки параметров

? F017

- Диапазон установки слишком маленький
- → Переустановить диапазон, увеличив интервал между установками Min и Max

? F036

- Отсутствует исполнимое ПО датчика
- → Выполнить обновление ПО или отправить устройство на ремонт

? F041

- Аппаратная ошибка, дефект электроники
- → Заменить устройство или отправить его на ремонт

Действия после устранения неисправностей

После устранения неисправности, если это необходимо в связи с причиной неисправности и принятыми мерами по ее устранению, повторно выполнить действия. описанные в гл. "Пуск в эксплуатацию".

8.3 Замена блока электроники

Дефектный блок электроники прибора может быть заменен самим пользователем.

Для применения во взрывоопасных зонах можно использовать только приборы и блоки электроники с соответствующей маркировкой взрывозащиты.

Запасной блок электроники можно заказать через соответствующее представительство VEGA.

Серийный номер датчика

В новый блок электроники необходимо загрузить установки датчика. Такие данные могут быть загружены:

- на заводе VEGA
- на месте самим пользователем

В обоих случаях необходимо ввести серийный номер датчика. Серийный номер обозначен на типовом шильдике датчика, внутри корпуса или в накладной на прибор.

i

Информация:

При загрузке на месте сначала необходимо скачать через Интернет данные спецификации датчика (см. Руководство по эксплуатации *Блок электроники*).

Назначение

Блоки электроники соответствуют типу датчика и различаются по выходу сигнала и питанию.

8.4 Обновление ПО

Для обновления ПО необходимо следующее:

- Датчик
- Питание
- VEGACONNECT
- ПК с ПО PACTware
- Файл с актуальным ПО датчика

Загрузка ПО датчика на ПК

На сайте "www.vega.com/downloads" зайти в "Software". В меню "plics-devices and sensors" выбрать соответствующую серию устройства. Правой кнопкой мыши через "Save target as" сохранить zip-файл, например, на Рабочем столе своего компьютера. Распаковать файлы из архива, например, на Рабочем столе.

Подготовка к обновлению

Подключить датчик к питанию и установить связь между ПК и датчиком через VEGACONNECT. Запустить PACTware и установить соединение с датчиком, например, через Помощника проекта VEGA. Закрыть окно параметров датчика, если оно открыто.

51

Загрузка ПО в датчик

В меню PACTware выбрать "Данные устройства", "Дополнительные функции" и "Обновить ПО устройства".

VEGASON 65 • 4

PACTware проверяет текущую версию аппаратного и программного обеспечения датчика и отображает эти данные. Процесс длится прибл. 60 сек.

Нажать кнопку "*Обновить ПО*" и и для запуска обновления выбрать hex-файл из загруженного ранее и распакованного архива. Остальные файлы будут установлены автоматически. В зависимости от датчика, данный процесс может длиться прибл. 1 час.

8.5 Ремонт прибора

При необходимости ремонта сделать следующее:

С нашей страницы в Интернете www.vega.com через меню "Downloads - Formulare und Zertifikate - Reparaturformular" загрузить формуляр возврата (23 КВ).

Заполнение такого формуляра позволит быстро и без дополнительных запросов произвести ремонт.

- Распечатать и заполнить бланк для каждого прибора
- Прибор очистить и упаковать для транспортировки
- Заполненный формуляр и имеющиеся данные безопасности прикрепить снаружи на упаковку
- Узнать адрес отправки у нашего регионального представителя. Имя нашего представителя в Вашем регионе можно найти на сайте www.vega.com в разделе: "Unternehmen -VFGA weltweit"

9 Демонтаж

9.1 Порядок демонтажа

Опасность!

В рабочем состоянии отдельные провода кабеля преобразователя звука (см. п. "Подготовка к монтажу") находятся под напряжением прибл. 70 V. Во избежание опасности удара током уровнемер VEGASON 65 следует монтировать в состоянии не под напряжением!

Внимание!

Отделять кабель преобразователя звука (см. п. "Подготовка к монтажу", см. также пример ниже) можно только в состоянии **не под напряжением**. В противном случае будет повреждена электроника прибора!

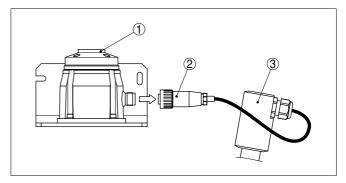


Рис. 29: Штекерный разъем между преобразователем звука и цоколем корпуса с электроникой

Цоколь корпуса с электроникой2
 Разъем на кабеле преобразователя звука3
 Соединительная деталь трубки преобразователя звука

Выполнить действия, описанные в п. "Монтаж" и "Подключение к источнику питания", в обратном порядке.

9.2 Утилизация

Устройство состоит из перерабатываемых материалов. Конструкция позволяет легко отделить электронный блок.

Директива WEEE 2002/96/EG

Данное устройство не подлежит действию Директивы WEEE 2002/96/EG и соответствующих национальных законов. Для утилизации устройство следует направлять прямо на специализированное предприятие, минуя коммунальные пункты сбора мусора, которые, в соответствии с Директивой WEEE, могут использоваться только для утилизации продуктов личного потребления.

Утилизация в соответствии с установленными требованиями исключает негативные последствия для человека и окружающей среды и позволяет повторно использовать ценные материалы.

Материалы: см. п. "Технические данные"

При невозможности утилизировать устройство самостоятельно, обращайтесь к изготовителю.

10 Приложение

10.1 Технические данные

Общие данные

Контактирующие с продуктом материалы

Фланец
 Поворотное крепление, фланец
 Сталь оцинкованная

- Преобразователь звука UP

Мембрана преобразователя звука
 Алюминий с пенополиэтиленовой накладкой

Не контактирующие с продуктом материалы

Корпус
 Алюминий с порошковым покрытием

Уплотнение между корпусом и кры- Силикон

шкой корпуса

- Смотровое окошко в крышке корпуса Поликарбонат (внесен в список UL-746-C) для модуля индикации и настройки

- Клемма заземления 316Ti/316L

- Кабель преобразователя звука (Ис- PUR (1.1082)

полнения С и D)

Bec4)

 компактное с фланцем (Исполнение A)
 8 ... 13,3 кг (17.6 ... 29.3 lbs)

- компактное с поворотным креплен- 8,7 ... 10,3 кг (19.1 ... 22.7 lbs)

ием (Исполнение B)

– раздельное с поворотным креплением (Исполнение C)

9,2 ... 11,1 кг (20.3 ... 24.5 lbs)

раздельное с резьбой (Исполнение D) 6,5 ... 7,5 кг

Выходные величины

Выходной сигнал 4 ... 20 mA/HART (активный)

Выходные значения HART

Значение HART (Primary Value)
 Расстояние до общего уровня

– Значение HART (Secondary Value) Температура

– Значение HART (3rd Value) Расстояние до уровня - в пересчете

Разрешающая способность 1,6 µА

Сигнал неисправности (токовый выход. Значение mA не изменяется, 20,5 mA, 22 mA,

устанавливаемый) < 3,6 mA

Ограничение тока 22 mA Нагрузка $< 500 \ \Omega^{5}$

28782-RU-100511

⁴⁾ В зависимости от размера и материала присоединения.

⁵⁾ При индуктивной нагрузке омическая часть должна быть не менее 25 Ом/мГ.

Демпфирование (63 % входной величины)	0 999 s, устанавливаемое
---------------------------------------	--------------------------

Исполненная Рекомендация NAMUR NE 43

Входная величина

Измеряемая величина

Исполнение A
 Расстояние между нижней кромкой фланца и

поверхностью продукта

Исполнения В, С и D
 Расстояние между нижней кромкой преобраз-

ователя звука и поверхностью продукта

Мертвая зона 0,8 м (2.624 ft)

Диапазон измерения

Жидкости до 45 м (147.6 ft)

Сыпучие продукты до 25 м

Условия при определении точности (соотв. DIN EN 60770-1)

Базовые условия по DIN EN 61298-1

_	Температура	+18 +30 °C (+64 +8	86 °F)

- Относительная влажность 45 ... 75 %

Давление воздуха
 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Прочие контрольные условия

- Отражатель Идеальный отражатель, например металличе-

ская плита 2 x 2 м (6.56 x 6.56 ft)

– Ложные отражения Самый сильный ложный эхо-сигнал на 20 dB

слабее полезного эхо-сигнала

Характеристики измерения

Ультразвуковая частота	18 kHz

Интервал > 2 сек. (в зависимости от установки парамет-

ров) 5°

Ширина диаграммы направленности при

-3 dB

Время успокоения⁶⁾ > 3 сек. (в зависимости от установки парамет-

ров)

Точность измерения

Разрешающая способность измерения	> 1 mm (0.039 in)
Погрешность измерения7)	См. диаграмму

- ⁶⁾ Время до выдачи правильного значения (с макс. отклонением 10 %) уровня при скачкообразном изменении уровня.
- 7) Включая нелинейность, гистерезис и неповторяемость.

Рис. 30: Погрешность измерения VEGASON 65 (Исполнение A)

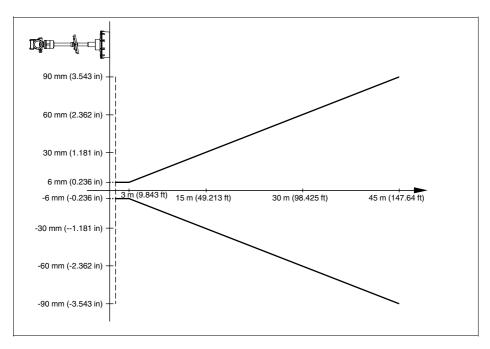


Рис. 31: Погрешность измерения VEGASON 65 (Исполнения В, С и D)

Влияние температуры окружающей среды на электронику датчика®

Средний температурный коэффициент нулевого сигнала (температурная погрешность)

0,06 %/10 K

Окружающие условия

Температура окружающей среды, хранения и транспортировки

-40 ... +80 °C (-40 ... +176 °F)

Условия процесса

Давление процесса

Исполнение А с фланцем РР 0 kPa

- прочие исполнения -20 ... 50 kPa/-0,2 ... 0,5 bar (-2.9 ... 7.3 psi)

Температура процесса (температура преобразователя звука)

-40 ... +80 °C (-40 ... +176 °F)

Относительно номинального диапазона измерения.

Va=a:		5655
Устойчивость	к	виорации

Механические колебания с 1 g и с частотой $5 \dots 200 \; \Gamma L^9)$

Электромеханические данные

Кабельный ввод

Двухкамерный корпус

 1 х кабельный ввод M20 х 1,5 (кабель: ø 5 ... 9 мм), 1 х заглушка M20 х 1,5; разъем M12 х 1 для VEGADIS 61 (вариант)

или:

 1 x колпачок ½ NPT, 1 x заглушка ½ NPT, разъем M12 x 1 для VEGADIS 61 (вариант)

или:

1 х разъем (в зависимости от исполнения),
 1 х заглушка M20 х 1,5; разъем M12 х 1 для
 VEGADIS 61 (вариант)

Пружинные контакты для провода сечением до

2,5 mm² (AWG 14)

Кабель преобразователя звука10)

– Длина

Диаметр

5 ... 300 m (16.4 ... 984.3 ft)

7,2 ... 7,6 мм (0.283 ... 0.299 in)

Модуль индикации и настройки

Питание и передача данных	через датчик
---------------------------	--------------

Индикатор Жидкокристаллический точечно-матричный

дисплей

Элементы настройки 4 клавиши

Степень защиты

- не установлен в датчике IP 20

установлен в датчике без крышки ІР 40

Материалы

- Kopnyc ABS

Смотровое окошко
 Полиэстровая пленка

Питание

Рабочее напряжение

- без взрывозащиты и Exd 20 ... 72 V DC, 20 ... 253 V AC, 50/60 Hz

Потребляемая мощность max. 4 VA; 2,1 W

Защита

Степень защиты ІР 66/ІР 67

- Проверено в соотв. с Директивами Немецкого ллойда, Характеристика 1.
- 10) При раздельном Исполнении С и D.

Категория перенапряжений III Класс защиты I

Разрешения

Устройства с разрешениями на применение, в зависимости от исполнения, могут иметь отличающиеся технические данные.

Для таких устройств следует учитывать соответствующую документацию, поставляемую вместе с устройством. Данную документацию также можно скачать с сайта www.vega.com через "VEGA Tools" и "serial number search" либо через "Downloads" и "Approvals".

10.2 Размеры

Корпус

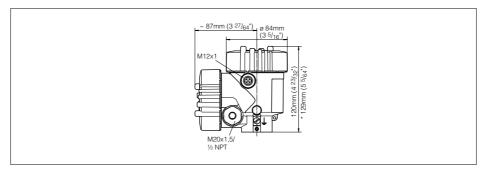


Рис. 32: Двухкамерный корпус из алюминия или нержавеющей стали (с установленным модулем индикации и настройки корпус выше на 9 мм/0.35 in)

VEGA

VEGASON 65

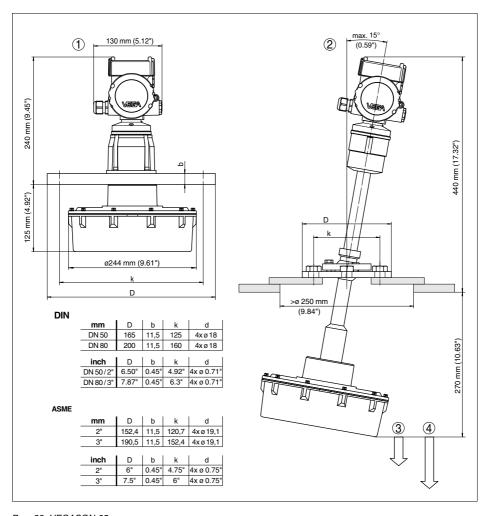


Рис. 33: VEGASON 65

- 1 Исполнение А
- 2 Исполнение В
- 3 Мертвая зона: 1 м (3.281 ft)
- 4 Диапазон измерения: на жидкостях до 25 м, на сыпучих продуктах до 15 м

VEGASON 65

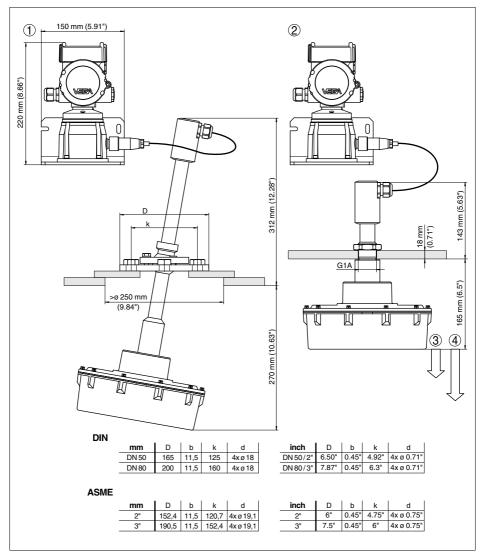


Рис. 34: VEGASON 65

- 1 Исполнение С
- 2 Исполнение D
- 3 Мертвая зона: 0,8 м (2.624 ft)
- 4 Диапазон измерения: на жидкостях до 45 м, на сыпучих продуктах до 25 м

10.3 Защита прав на интеллектуальную собственность

VEGA product lines are global protected by industrial property rights. Further information see http://www.vega.com.

Only in U.S.A.: Further information see patent label at the sensor housing.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter http://www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site http://www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web http://www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте http://www.vega.com.

VEGA系列产品在全球享有知识产权保护。 进一步信息请参见网站<http://www.vega.com>。

10.4 Товарный знак

Все используемые фирменные знаки, а также торговые и фирменные имена являются собственностью их законного владельца/автора.

Дата печати:

ГБ04

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany Phone +49 7836 50-0 Fax +49 7836 50-201 E-mail: info@de.vega.com

www.vega.com

Вся приведенная здесь информация о комплектности поставки, применении и условиях эксплуатации датчиков и систем обработки сигнала соответствует фактическим данным на момент.

© VEGA Grieshaber KG, Schiltach/Germany 2010