

Техническое описание

Портативный ультразвуковой расходомер Proline Prosonic Flow 93T Portable

Портативная ультразвуковая система измерения расхода Измерение объемного расхода жидкостей

Области применения

Эти датчики идеально подходят для бесконтактного измерения расхода чистых или не сильно загрязненных жидкостей, независимо от давления или электрической проводимости.

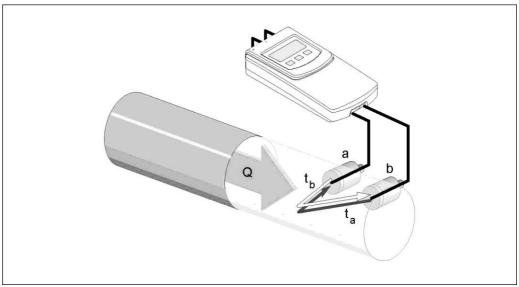
- Идеальное решение для временного использования везде, где требуется точное измерение расхода или поверка.
- В частности, подходят для целей модернизации существующих систем, мониторинга и проверки точек измерения.
- Предназначены для труб диаметром DN 15...4000 (½"...160").
- Предназначены для диапазона температур жидкости от -40 до +170 °C (от -40 до +338 °F).
- Возможно использование с любыми металлическими и пластиковыми трубами, с футеровкой и без футеровки, а также с композитными трубами.
- Идеальное решение для всех звукопроводящих жидкостей, таких как вода, сточные воды, нефть, растворители, кислоты, углеводороды и химикаты.

Особенности и преимущества

Ультразвуковая накладная система Prosonic Flow позволяет выполнять точное и экономичное измерение расхода с внешней стороны трубы и без прерывания процесса. Двунаправленное измерение расхода, не вызывающее потери давления.

- Простой и безопасный монтаж датчика с помощью меню обеспечивает точные результаты измерения.
- Простой и безопасный ввод в эксплуатацию с помощью меню быстрой настройки.
- Автоматическое сканирование частот для оптимальной установки и максимальной эффективности измерений.
- Токовый вход для параллельного сбора данных или поверки других устройств.
- Пассивные или активные токовые выходы.
- Удаленное конфигурирование и индикация значения измеряемой величины с использованием управляющей программы FieldCare компании Endress+Hauser.
- Встроенный регистратор данных/менеджер групп.
- Упрощенная передача данных с помощью USB-разъема без дополнительного программного обеспечения.

Содержание


Принцип действия и архитектура системы 3	
Принцип измерения 3	
Измерительная система	
Выбор датчика и варианты монтажа	5
Входные данныеб	
Измеряемая величинаб	
Диапазон измеренияб	
Рабочий диапазон измерения расхода	
Входной сигнал 6	j
_	
Выходные данные	
Выходной сигнал	
Отсечка малого расхода	
Гальваническая развязка б)
• · · · · · · · · · · · · · · · · · · ·	
Электропитание	
Электрическое подключение измерительного блока	
Напряжение питания	7
Сое́динительный кабель (датчик/преобразователь) Заземление	
заземление	,
Точностные характеристики	2
Нормальные рабочие условия Максимальная погрешность измерений)
Максимальная погрешность измерении Повторяемость	
повторяемоств	,
Рабочие условия: монтаж	
Инструкции по монтажу 9	
Входной и выходной прямые участки10	י ר
входной и выходной примые участки	,
Рабочие условия: окружающая среда11	1
Диапазон температуры окружающей среды	
Температура хранения1	
Класс защиты1	
Ударопрочность и виброустойчивость1	
Электромагнитная совместимость (ЭМС)	
(0.1.0)	
Рабочие условия: процесс12	2
Диапазон температур среды	
Диапазон давления среды (номинальное давление) 12	
Потери давления12	
• •	
Механическая конструкция1	3
Конструкция, размеры13	
Bec17	
Материалы17	7
Интерфейс пользователя18	3
Элементы индикации18	3
Элементы управления18	
Языковая группа18	3
Дистанционное управление18	3
Сертификаты и нормативы19	
Маркировка СЕ19	
3нак "C-tick" 19	
Другие стандарты и рекомендации19	ð
_	
Размещение заказа19)
Аксессуары20)
Аксессуары к прибору	
Аксессуары к измерительной системе	
Аксессуары для обслуживания21	I

Документация	. 21
Зарегистрированные товарные знаки	. 21

Принцип действия и архитектура системы

Принцип измерения

Принцип работы измерительной системы основан на разнице времени прохождения сигнала. При таком способе измерения акустические (ультразвуковые) сигналы передаются между двумя датчиками. Сигналы посылаются в обоих направлениях, т.е. соответствующий датчик работает и как звукопередатчик, и как звукоприемник. Поскольку скорость распространения волн против направления потока меньше, чем в направлении потока, возникает разница времени прохождения сигнала. Эта разница прямо пропорциональна скорости потока.

Принцип измерения на основе разницы времени прохождения

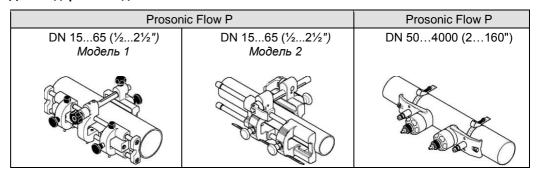
 $Q = V \cdot A$

- а Датчик
- b Датчик
- Q Объемный расход
- V Скорость потока ($v \sim \Delta t$)
- Δt Разница времени прохождения ($\Delta t = t_a t_t$)
- А Площадь поперечного сечения трубы

Измерительная система вычисляет объемный расход жидкости на основе полученной разницы времени прохождения сигнала и площади поперечного сечения трубы. Кроме измерения разницы времени прохождения сигнала измерительная система одновременно измеряет скорость звука в жидкости. На основе этой дополнительной измеряемой величины можно определять различные жидкости или контролировать качество продукта. Существует возможность настройки измерительного прибора на месте эксплуатации, в соответствии с конкретными условиями применения, при помощи меню быстрой настройки.

Измерительная система

Измерительная система состоит из преобразователя и двух датчиков.


Преобразователь предназначен как для управления датчиками, так и для подготовки процесса и анализа сигналов измерения, а также для преобразования сигналов в требуемую выходную величину.

Датчики работают как звукопередатчики и звукоприемники. В зависимости от области применения и исполнения датчики могут быть установлены для выполнения измерений на основе однократного или двукратного прохождения сигнала → стр. 5.

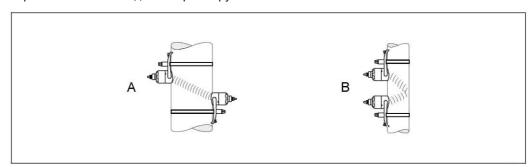
Преобразователь

Датчик/держатели датчиков

Принадлежности для монтажа

Для датчиков следует определить требуемые монтажные расстояния. Для определения этих значений необходима информация о жидкости, материале трубы и точные размеры трубы. В преобразователе хранятся значения скорости звука в различных жидкостях, для различных материалов труб и материалов футеровки:

Жидкость	Материал трубы	Футеровка
 Вода Морская керосин вода Дистиллиро ванная вода Спирт масло Бензол Бромид Этанол Керосин Керосин Метанол Сматинов Смазочное масло Дизельное топливо Бензин 	■ Углеродистая сталь (стеклопластик) ■ Чугун РVDF (ПВДФ) ■ Нержавеющая сталь РР (полиамид) ■ Сплав Alloy-С ■ ПВХ РЕ (полиэтилен) ■ LDPE Сполиэтилен низкой плотности) ■ HDPE (полиэтилен высокой плотности)	 ■ МОКТАК (строительный раствор) ■ Резина ■ ТАК ЕРОХУ (эпоксидная смола)


Если используется жидкость, материалы труб или материалы футеровки, не указанные в таблице, и отсутствуют соответствующие значения скорости звука для этих жидкостей/материалов, то для определения этих значений можно применить датчики DDU18 и DDU20.

DDU18 (измерение скорости звука)	DDU20 (измерение толщины стенки трубы)
Диапазон номинальных диаметров: DN 503000 (2120").	Диапазон толщины стенки трубы: ■ Стальные трубы: 1,250 мм (0,052,0") ■ Пластиковые трубы: 415 мм (0,16"0,60") (в определенной степени подходит только для труб из РТГЕ и полиэтилена)

Выбор датчика и варианты монтажа

Допускается монтаж датчиков одним из двух способов:

- Вариант монтажа для измерения на основе однократного прохождения сигнала: датчики находятся на противоположных сторонах трубы.
- Вариант монтажа для измерения на основе двукратного прохождения сигнала: датчики располагаются на одной стороне трубы.

Варианты монтажа датчика

- А Вариант монтажа для измерения на основе однократного прохождения сигнала
- В Вариант монтажа для измерения на основе двукратного прохождения сигнала

Требуемая кратность прохождения сигнала зависит от типа датчиков, номинального диаметра трубы и толщины стенки трубы. Рекомендуются следующие типы монтажа:

Тип датчика	Номинальный диаметр	Частота датчика	Иденти- фикатор датчика	Тип монтажа ¹⁾
	DN 1565 (½2½")	*6 МГц	P-CL-6F*	Двукратное (или однократное) прохождение сигнала 4)
	DN 5065 (½2½")	6 МГц (или 2 МГц)	P-CL-6F* P-CL-2F*	Двукратное (или однократное) прохождение сигнала ²⁾
Prosonic Flow P	DN 80 (3")	2 МГц	P-CL-2F*	Двукратное прохождение сигнала
	DN 100300 (412")	2 МГц (или 1 МГц)	P-CL-2F* P-CL-1F*	Двукратное прохождение сигнала ³⁾
	DN 300600 (1224")	1 МГц (или 2 МГц)	P-CL-1F* P-CL-2F*	Двукратное прохождение сигнала ³⁾
	DN 6504000 (26160")	1 МГц (или 0,5 МГц)	P-CL-1F* W-CL-05F*	Однократное прохождение сигнала ³⁾

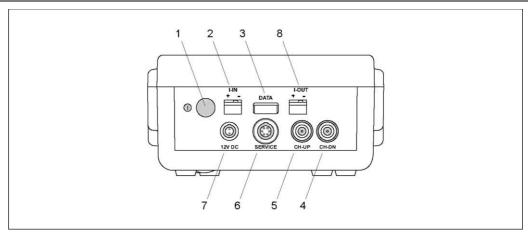
- Для датчиков в накладном исполнении преимущественно рекомендуется тип монтажа, обеспечивающий двукратное прохождение сигнала. Этот вариант предполагает самый простой и самый удобный тип монтажа и обеспечивает возможность установки системы даже в том случае, если доступ к трубе имеется только с одной стороны. Тем не менее, в некоторых областях применения монтаж однократного прохождения сигнала является предпочтительным. Включают в себя следующее:
 - определенные типы пластиковых труб с толщиной стенки > 4 мм (0,16");
 - трубы из композитных материалов (например, из стеклопластика);
 - трубы с футеровкой;
 - области применения при работе с жидкостями, имеющими высокую степень акустического демпфирования.
- При небольших номинальных диаметрах трубы (не более DN 65/2½") расстояние между датчиками в случае Prosonic Flow W может оказаться недостаточным для варианта монтажа с двукратным прохождением сигнала и датчиком P-CL-2F*. В этом случае следует использовать вариант монтажа, обеспечивающий однократное прохождение сигнала.
- 3) Датчики 0,5 МГц (Prosonic Flow W) также рекомендуются для областей применения с трубами из композитного материала (например, из стеклопластика) и могут быть рекомендованы для определенных труб с футеровкой, для труб с толщиной стенки > 10 мм (0,4") или для областей применения с рабочей средой, имеющей высокую степень акустического демпфирования. Для таких областей применения, как правило, рекомендуется вариант установки датчиков типа W, обеспечивающий однократное прохождение сигнала.
- 4) Датчики 6 МГц для областей применения со скоростью потока < 10 м/с.

	Proline Prosonic Flow 93T Portable
	Входные данные
Измеряемая величина	Скорость потока (разница времени прохождения пропорциональна скорости потока)
Диапазон измерения	Около: v = 015 м/с (050 фут/с)
Рабочий диапазон измерения расхода	Более 150: 1
Входной сигнал	Токовый вход ■ гальванически изолированный; ■ в пассивном состоянии: 0/420 мА, R _i < 150 Ом, макс. 30 В пост. тока; ■ напряжение на клеммах: 230 В пост. тока; ■ выбор постоянной времени (0,05100 с); ■ установка пределов диапазона измерений; ■ температурный коэффициент: обычно 0,002 % ИЗМ/°С, (ИЗМ = от значения измеряемой величины); ■ разрешающая способность: 0,82 мкА.
	Выходные данные
Выходной сигнал	Токовый выход ■ выбор типа: активный/пассивный: — активный 0/420 мА, R _i < 700 Ом — пассивный 420 мА, 30 В пост. тока, R _i < 150 Ом ■ установка пределов диапазона измерений; ■ температурный коэффициент: обычно 0,005 % ИЗМ/°С, (ИЗМ = от значения измеряемой величины); ■ выбор постоянной времени (0,05100 с).
	Функция регистрации данных В приборе предусмотрена функция регистрации. Значения измеряемой величины могут сохраняться в формате с разделением запятыми (CSV) на внешнем USB-устройстве хранения (FAT 16/FAT 32). Возможен выбор цикла регистрации в диапазоне 199 999 с. Не следует использовать USB-устройства хранения данных с максимальной вместимостью более 2Гб. Для каждой записи требуется приблизительно 130 байт. Максимальная емкость USB-устройства хранения данных – 1 Гб.
	Сохраняются следующие значения: время (дд.мм.ггг чч:мм:сс); расход; скорость звука; скорость потока; уровень сигнала; соотношение сигнал – шум; сумматор (13); состояние системы; токовый вход 0/420 мА (расход и значение активного тока). К каждой записи добавляется название прибора и информация о приборе, например,

Отсечка малого расхода

Возможность выбора точек отсечки малого расхода.

до 20 групп.


Гальваническая развязка

Все входные и выходные цепи, цепь питания гальванически развязаны.

Функция менеджера групп Позволяет хранить программируемые группы (данные трубы, данные датчика, данные жидкости и т.д.) на внешнем USB-устройстве хранения данных. Можно определить

Электропитание

Электрическое подключение измерительного блока

Подключение преобразователя

- 1 Переключатель ВКЛ./ВЫКЛ. (удерживайте переключатель нажатым ≥ 3 с)
- 2 Разъем токового входа
- 3 USB-разъем
- 4 Разъем соединительного кабеля (CH-DN, по ходу потока)
- 5 Разъем соединительного кабеля (СН-UР, против хода потока)
- 6 FXA193/FXA291 разъем для модема
- Разъем для зарядного устройства (предлагаются адаптеры со съемными разъемами)
- 8 Разъем токового выхода

Напряжение питания

Преобразователь

Блок питания

■ 100...240 В перем. тока, 47...63 Гц к адаптеру питания (12 В пост. тока, 2,5 А)

Примечание.

Входное напряжение не должно превышать 16 В!

Никелевый металлогидридный аккумулятор

- Время работы: не менее 8 часов
- Время зарядки: примерно 3,6 часа

Датчик

Питание от преобразователя

Соединительный кабель (датчик/преобразователь)

Используйте только соединительные кабели, поставляемые Endress+Hauser.

Доступны соединительные кабели для других вариантов исполнения → стр. 20.

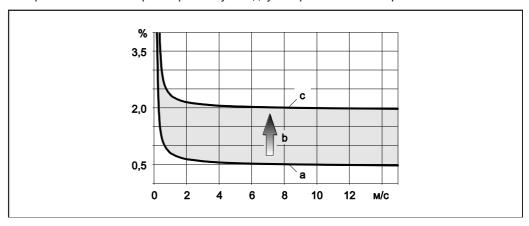
- Оболочка кабеля: PTFE
- Длина кабеля: 5 м (16,4 фута), 10 м (32,8 фута)

Примечание.

Для обеспечения правильности измерений не прокладывайте кабель вблизи электрических машин и коммутирующих устройств.

Заземление

Для обеспечения заземления не требуется выполнять специальных действий.


Точностные характеристики

Нормальные рабочие условия

- Температура жидкости: +20...+30 °C
- Температура окружающей среды: +22 °C± 2 К
- Время прогрева: 30 мин.
- Датчики и преобразователь заземлены.
- Измерительные датчики установлены надлежащим образом.

Максимальная погрешность измерений

Погрешность измерения зависит от ряда факторов. Различают погрешность измерения прибора (Prosonic Flow 93 = 0,5 % от измеряемой величины) и дополнительную специфичную для монтажа погрешность измерения (обычно 1,5 % от измеряемой величины), не зависящую от прибора. Специфичная для монтажа погрешность измерения зависит от условий монтажа на месте эксплуатации, таких как номинальный диаметр, толщина стенки трубы, фактическая геометрия трубы, жидкость и т.д. Погрешность измерения в точке измерения равна сумме двух погрешностей измерения.

Пример погрешности измерения в трубе с номинальным диаметром DN > 200 (8")

- а Погрешность измерения прибора (0,5 % ИЗМ ± 3 мм/с)
- b Погрешность измерения в зависимости от условий монтажа (обычно 1,5 % ИЗМ)
- с Погрешность измерения в точке измерения: ±0,5 % ИЗМ ± 3 мм/с (±1,5 % ИЗМ ±2 % ИЗМ ± 3 мм/с

Погрешность измерения в точке измерения

Погрешность измерения в точке измерения складывается из погрешности измерения прибора (0,5 % ИЗМ) и погрешности измерения в зависимости от условий монтажа на месте эксплуатации. Для заданной скорости потока > 0,3 м/с (1 фут/с) и числа Рейнольдса > 10 000 типичные пределы ошибок составляют:

Номинальный диаметр	Пределы ошибок прибора	+	Специфичные для монтажа пределы ошибок (типичные)	→	Пределы ошибок в точке измерения (типичные)
DN 15 (У /)	±0,5 % ИЗМ ± 5 мм/с	+	±2,5 % ИЗМ	→	±3 % ИЗМ ± 5 мм/с
DN 25200 (18")	±0,5 % ИЗМ ± 7,5 мм/с	+	±1,5 % ИЗМ	→	±2 % ИЗМ ± 7,5 мм/с
DN 200 (8")	±0,5 % ИЗМ ± 3 мм/с	+	±1,5 % ИЗМ	→	±2 % ИЗМ ± 3 мм/с

ИЗМ = от значения измеряемой величины

Отчет с результатами измерений

При необходимости прибор поставляется с сертификатом точности измерения (отчет с результатами измерений). Чтобы сертифицировать точность прибора, измерения выполняются при стандартных условиях. Датчики устанавливаются на трубе с номинальным диаметром DN 50 (2") или DN 100 (4") соответственно.

Отчет с результатами измерений гарантирует следующие пределы ошибок прибора [для скорости потока > 0,3 м/с (1 фут/с) и числа Рейнольдса > 10 000]:

Номинальный диаметр	Гарантированные пределы ошибок прибора
DN 50 (2")	±0,5 % ИЗМ ± 5 мм/с
DN 100 (4")	±0,5 % ИЗМ ± 7,5 мм/с

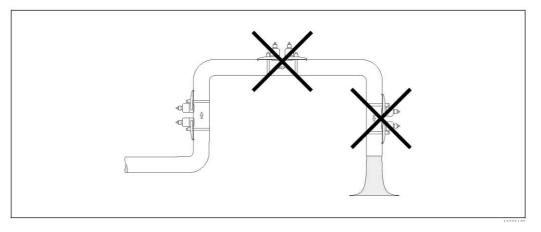
ИЗМ = от значения измеряемой величины

Повторяемость

± 0,3 % в случае скорости потока > 0,3 м/с (1 фут/с)

Рабочие условия: монтаж

Инструкции по монтажу


Место монтажа

Корректное измерение расхода возможно только при полностью заполненном трубопроводе. Рекомендуется устанавливать датчики в вертикальной трубе. Примечание.

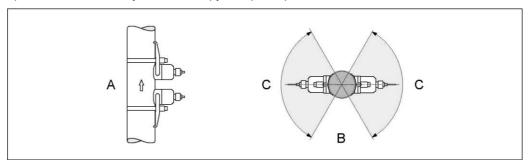
Наличие пузырьков воздуха или газа в измерительной трубе расходомера может привести к увеличению погрешности измерения.

Поэтому не рекомендуется установка в следующих местах:

- Самая высокая точка трубопровода. Возможно скопление воздуха в расходомере.
- Непосредственно перед свободным сливом из вертикальной трубы. Возможно неполное заполнение трубы.

Endress+Hauser

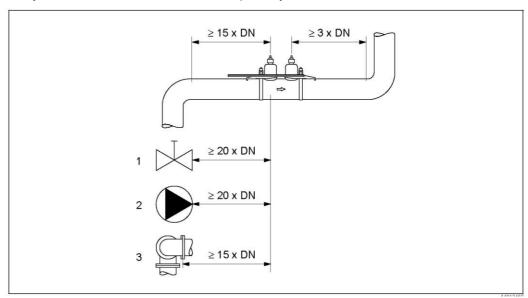
9


Ориентация

Вертикальная

Рекомендуемая ориентация при восходящем потоке (вид A). При этой ориентации в неподвижной жидкости переносимые твердые частицы будут опускаться вниз, а газы подниматься наверх, минуя датчик. Существует возможность полного осушения трубопровода и предотвращения осаждения частиц.

Horizontal


При горизонтальной ориентации установки в рекомендуемом диапазоне (вид В) влияние на точность измерения скоплений газа и воздуха в верхней части трубы, а также создающих проблемы отложений у основания трубы, пренебрежимо мало.

- А Рекомендуемая ориентация при восходящем потоке
- В Рекомендуемые пределы углов установки при горизонтальной ориентации
- С Рекомендуемые пределы углов установки: максимум 120°

Входной и выходной прямые участки

По возможности датчик следует устанавливать в удалении от клапанов, Т-образных участков, изгибов и т.п. Для обеспечения точности измерения требуется соблюдать следующие длины входных и выходных прямых участков.

- 1 Клапан (открытие на 2/3)
- 2 Hacoo
- 3 Два изгиба трубы в разных плоскостях

Рабочие условия: окружающая среда

Диапазон температуры окружающей среды

Преобразователь

0...+60 °C (+32...+140 °F)

Датчик Prosonic Flow P

DN 15...65 (1/2...21/2")

- Стандартный: -40...+100 °C (-40...+212 °F)
- Допустимый: -40...+150 °C (-40...+302 °F)

DN 50...4000 (2...160")

- Стандартный: -40...+80 °C (-40...+176 °F)
- Допустимый: 0...+170 °C (+32...+338 °F)

Датчик DDU18 (аксессуары: измерение скорости звука)

- Стандартный: -40...+80 °C (-40...+176 °F)
- Допустимый: 0...+170 °C (+32...+338 °F)

Датчик DDU20 (аксессуары: измерение толщины стенки трубы)

-20...+60 °C (-4...+140 °F)

Соединительный кабель (датчик/преобразователь)

-40...+170 °C (-40...+338 °F)

Температура хранения

Температура хранения соответствует диапазону температуры окружающей среды.

Класс защиты

Преобразователь

IP 40

Датчик

IP 68 (NEMA 6P), присоединение IP 50

Датчик DDU18 (аксессуары: измерение скорости звука)

IP 68 (NEMA 6P), присоединение IP 50

Датчик DDU20 (аксессуары: измерение толщины стенки трубы)

IP 67 (NEMA 4X), присоединение IP 50

Ударопрочность и виброустойчивость

В соответствии с ІЕС 68-2-6

Электромагнитная совместимость (ЭМС)

Электромагнитная совместимость (требования по ЭМС) в соответствии с IEC/EN 61326 "Излучение согласно требованиям для класса А" и с рекомендациями NAMUR NE 21/43.

Рабочие условия: процесс

Диапазон температур среды

Датчик Prosonic Flow P

DN 15...65 (1/2...21/2")

- Стандартный: -40...+100 °C (-40...+212 °F)
- Допустимый: -40...+150 °C (-40...+302 °F)

DN 50...4000 (2...160")

- Стандартный: -40...+80 °C (-40...+176 °F)
- Допустимый: 0...+170 °C (+32...+338 °F)

Датчик DDU18 (аксессуары: измерение скорости звука)

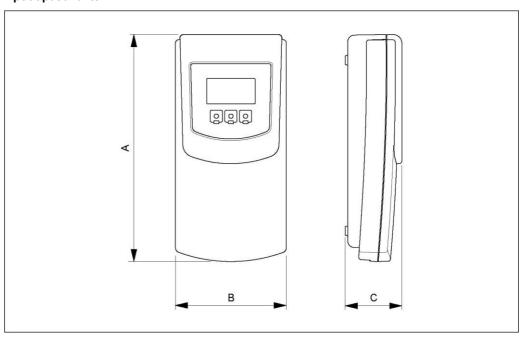
- Стандартный: -40...+80 °C (-40...+176 °F)
- Допустимый: 0...+170 °C (+32...+338 °F)

Датчик DDU20 (аксессуары: измерение толщины стенки трубы)

-10...+60 °C (+14...+140 °F)

Диапазон давления среды (номинальное давление)

Ограничения давления нет, для идеального измерения статическое давление жидкости должно превышать давление паров.


Потери давления

Потери давления отсутствуют.

Механическая конструкция

Конструкция, размеры

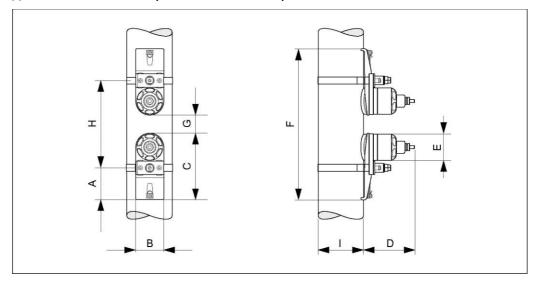
Преобразователь

Размеры в единицах СИ

A	В	С
270	130	63

Все размеры указаны в [мм]

Размеры в американских единицах измерения


A	В	С
10.6	5.12	2.48

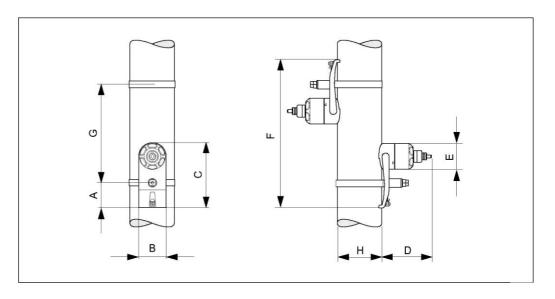
Все размеры указаны в [дюймах]

Защитный чехол

Размеры (длина × ширина × высота) защитного чехла для преобразователя: $280 \times 150 \times 80$ мм (11,0 × 5,90 × 3,15")

Датчик Prosonic Flow P (DN 50...4000 / 2...160")

Вариант монтажа для измерения на основе двукратного прохождения сигнала


Α	В	С	D	E	F	G
56	62	145	111	Ø 58	макс. 872	мин. 0,5
		ı				
Размер "Н" м ■ с помощы быстрой н	Зависит от условий в точке измерения (труба, жидкость и т.д.). Размер "Н" можно определить: ■ с помощью программируемого преобразователя (меню быстрой настройки или программа FieldCare) ■ в онлайн-режиме (программа выбора приборов Applicator)					аметр трубы

Все размеры указаны в [мм]

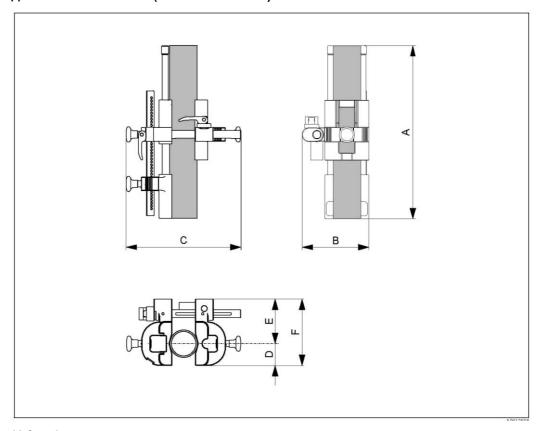
Размеры в американских единицах измерения

Α	A B C D E				F	G
2.20	2.44	5.71	4.37 Ø 2,28		макс. 34,3	мин. 0,2
		ı				
Размер "Н" м ■ с помощы быстрой н	Зависит от условий в точке измерения (труба, жидкость и т.д.). Размер "Н" можно определить: ■ с помощью программируемого преобразователя (меню быстрой настройки или программа FieldCare) ■ в онлайн-режиме (программа выбора приборов Applicator)					аметр трубы

Все размеры указаны в [дюймах]

Вариант монтажа для измерения на основе однократного прохождения сигнала Размеры в единицах СИ

Α	В	С	D	E	F
56	62	145	111	Ø 58	макс. 872
G			Н		
Зависит от условий в точке измерения (труба, жидкость и т.д.). Размер "G" можно определить: ■ с помощью программируемого преобразователя (меню быстрой настройки или программа FieldCare) ■ в онлайн-режиме (программа выбора приборов Applicator)			Внешний диам	етр трубы	


Все размеры указаны в [мм]

Размеры в американских единицах измерения

Α	В	С	D	E	F
2.20	2.44	5.71	4.37	Ø 2,28	макс. 34,3
	G			ı	Н
Зависит от условий в точке измерения (труба, жидкость и т.д.). Размер "G" можно определить: ■ с помощью программируемого преобразователя (меню быстрой настройки или программа FieldCare) ■ в онлайн-режиме (программа выбора приборов Applicator)			Внешний диам	етр трубы	

Все размеры указаны в [дюймах]

Датчик Prosonic Flow P (DN 15...65 / 1/2...21/2")

Модель 2 Размеры в единицах СИ

Α	В	С (мин./макс.)	D	E	F
285	110	210/255	35	75	110

Все размеры в [мм]

Размеры в американских единицах

Α	В	С (мин./макс.)	D	E	F
11.2	4.33	8,27/10,0	1.38	2.95	4.33

Все размеры указаны в [дюймах]

Bec

Преобразователь

1,6 кг (3,53 фунта)

Датчик Prosonic Flow P

- DN 15...65 (½...2½") (вкл. монтажный материал): 1,78 кг (3,9 фунта)
- DN 50...4000 (½...2½") (вкл. монтажный материал): 2,8 кг (6,2 фунта)

Датчик (аксессуары)

- Prosonic Flow DDU18 (включая монтажный материал): 2,4 кг (5,3 фунта)
- Prosonic Flow DDU20 (включая монтажный материал): 0,23 кг (0,5 фунта)

Примечание.

ес указан без учета упаковочного материала.

Материалы

Преобразователь

Полимерные материалы

Датчик Prosonic Flow P

DN 15...65 (1/2...21/2")

Держатель датчика: защищенный от коррозии алюминий, нержавеющая сталь 1.4301/304

- Корпус датчика: нержавеющая сталь 1.4301/304
- Контактные поверхности датчика: химически устойчивая пластмасса

DN 50...4000 (2...160")

- Держатель датчика: нержавеющая сталь 1.4308/CF-08
- Корпус датчика: нержавеющая сталь 1.4301/304
- Крепежные ленты/кронштейн: тканевые или нержавеющая сталь 1.4301/304
- Контактные поверхности датчика: химически устойчивая пластмасса

Датчик (аксессуары)

Prosonic Flow DDU18; Prosonic Flow DDU20

- Держатель датчика: нержавеющая сталь 1.4308/CF-08
- Корпус датчика: нержавеющая сталь 1.4301/304
- Крепежные ленты/кронштейн: тканевые или нержавеющая сталь 1.4301/304
- Контактные поверхности датчика: химически устойчивая пластмасса

Соединительный кабель (датчик/преобразователь)

Соединительный кабель PTFE

- Оболочка кабеля: PTFE
- Кабельный разъем: нержавеющая сталь

Интерфейс пользователя

Элементы индикации

- Жидкокристаллический дисплей: с подсветкой, четырехстрочный, 16 символов в строке
- Пользовательская настройка для вывода различных значений измеряемых величин и переменных состояния

Элементы управления

- Локальное управление с помощью трех оптических клавиш
- Меню быстрой настройки для конкретной области применения, упрощающие ввод в эксплуатацию

Языковая группа

Языковые группы, доступные для работы в различных странах:

- Западная Европа и Америка (WEA): английский, немецкий, испанский, итальянский, французский, голландский и португальский.
- Восточная Европа/Скандинавия (EES):
 английский, русский, польский, норвежский, финский, шведский и чешский.
- Южная и Восточная Азия (SEA): английский, японский, индонезийский.
- Китай (CN): английский, китайский.

Языковую группу можно изменить с помощью управляющей программы FieldCare.

Дистанционное управление

Управление с помощью FieldCare:

- возможность загрузки или сохранения предварительно запрограммированных точек измерения;
- регистрация данных конфигурации;
- визуализация значений измеряемой величины.

Сертификаты и нормативы

Маркировка СЕ

Измерительная система полностью удовлетворяет требованиям соответствующих директив EC. Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки CE.

Знак "C-tick"

Измерительная система соответствует требованиям по ЭМС Австралийской службы по связи и телекоммуникациям (Australian Communications and Media Authority, ACMA).

Другие стандарты и рекомендации

- EN 60529
 - Степень защиты корпуса (код ІР)
- EN 61010-1
 - "Требования по безопасности электрического оборудования для измерения, контроля и лабораторного применения".
- IEC/EN 61326
 - "Излучение в соответствии с требованиями класса А" Электромагнитная совместимость (требования по ЭМС)
- ANSI/ISA-S82 01
 - "Безопасность электрического и электронного испытательного, контрольноизмерительного и аналогичного оборудования — общие требования". Степень загрязнения 2. монтажная категория II.
- CAN/CSA-C22.2 No. 1010.1-92
 "Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования". Степень загрязнения 2

Размещение заказа

Подробная информация по размещению заказов и кодам заказа предоставляется по запросу в региональном торговом представительстве Endress+Hauser.

Аксессуары

Для преобразователя и датчика поставляются различные аксессуары, которые можно заказать в Endress+Hauser отдельно. Подробную информацию о кодах заказа можно получить в представительстве Endress+Hauser.

Аксессуары к прибору

Аксессуар	Описание	Код заказа
Датчик Р (DN 1565 / ½2½") Накладное исполнение	(DN 1565 / ½2½") ■ -40+100 °C (-40+212 °F) ■ -40+150 °C (-40+302 °F)	DK9PT - 1A DK9PT - 2A
Датчик Р (DN 504000 / 2160") Накладное исполнение	DN 50300 (212") ■ -40+80 °C (-40+176 °F) ■ -40+170 °C (-40+338 °F) DN 1004000 (4160") ■ -40+80 °C (-40+176 °F) ■ 0+170 °C (+32+338 °F)	DK9PT - BA DK9PT - FA DK9PT - AA DK9PT - EA
Датчик DDU18	Датчик для измерения скорости звука -40+80 °C (-40+176 °F) 0+170 °C (+32+338 °F)	50091703, 50091704
Датчик DDU20	Датчик для измерения толщины стенки трубы. ■ от -20 до +60 °C (от -4 до +140 °F)	71112217

Аксессуары к измерительной системе

Аксессуар	Описание	Код заказа
Держатель датчика в комплекте	 ■ Датчик Prosonic Flow P (DN 1565 / ½2½"): держатель датчика, накладное исполнение ■ Prosonic Flow P (DN 504000 / 2160") – Держатель датчика, неподвижная стопорная гайка, накладное исполнение – Держатель датчика, неподвижная стопорная гайка, накладное исполнение 	DK9SH – 2 DK9SH – A DK9SH – B
Накладной монтажный комплект	 DN < 1500 (60") (тканевые крепежные ленты) DN ≥ 1500 (60") (тканевые крепежные ленты) DN 50300 (212"): 0+170 °C (+32+338 °F) (кронштейн из нержавеющей стали) 	DK9ZT – D DK9ZT – E DK9ZT - B
Соединительный кабель	5 м (16,4 фут) кабель датчика (PTFE): -40+170 °C (40+338 °F) 10 м (32,8 фут) кабель датчика (PTFE): -40+170 °C (40+338 °F)	DK9SS – CEE DK9SS – CEF
Акустическая связующая жидкость	 ■ Связующая жидкость: -40+170 °C (-40+338 °F), стандартная, высокая температура ■ Акустическая связующая жидкость: -40+80 °C (-40+176 °F) ■ Растворимая в воде связующей жидкости: -20+80 °C (-4+176 °F) ■ Связующая жидкость DDU20: -20+60 °C (-4+140 °F) ■ Связующая жидкость: -40+100 °C (-40+212 °F), стандартная, тип MBG2000 	DK9CM - 2 DK9CM - 3 DK9CM - 4 DK9CM - 6 DK9CM - 7

Аксессуары для обслуживания

Аксессуар	Описание	Код заказа
Applicator	Программное обеспечение для выбора и определения конфигурации расходомеров. Программное обеспечение Applicator можно загрузить в Интернет или заказать на компактдиске для последующей установки на локальном ПК. Для получения дополнительной информации обратитесь в представительство Endress+Hauser.	DXA80 - *
Fieldcheck	Тестер/симулятор для тестирования расходомеров в полевых условиях. С помощью программного пакета "FieldCare" результаты тестирования можно импортировать в базу данных, распечатать и использовать для официальной сертификации. Для получения дополнительной информации обратитесь в представительство Endress+Hauser.	50098801
FieldCare	FieldCare представляет собой инструмент управления приборами на базе стандарта FDT от компании Endress+Hauser. С его помощью можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Кроме того, получаемая информация о состоянии обеспечивает эффективный мониторинг состояния приборов.	См. страницу изделия на веб- сайте компании Endress+Hauser: www.endress.com
FXA193	Служебный интерфейс между измерительным прибором и ПК для управления посредством FieldCare.	FXA193 - *
Кабель связи	Кабель связи для подключения датчика Prosonic Flow 93T к служебному интерфейсу FXA193.	DK9ZT - I
FXA291	Служебный интерфейс между измерительным прибором и ПК для управления посредством FieldCare.	FXA291 - *
Кабель связи	Кабель связи для подключения датчика Prosonic Flow 93T к служебному интерфейсу FXA291.	DK9ZT - 8

Документация

- Измерение расхода (FA005D/06)
- Инструкция по эксплуатации портативного ультразвукового расходомера Prosonic Flow 93T Portable (BA136D/06)

Зарегистрированные товарные знаки

FieldCare®, Fieldcheck®

Зарегистрированные или ожидающие регистрации товарные знаки Endress+Hauser Flowtec AG, Райнах, Швейцария.

Региональное представительство

ООО "Эндресс+Хаузер" 117105, РФ, г. Москва Варшавское Шоссе, д.35, стр. 1, 5 этаж, БЦ "Ривер Плаза"

Тел. +7(495) 783-2850 Факс +7(495) 783-2855 www.ru.endress.com info@ru.endress.com

People for Process Automation